Title: The Vector Probe in Heavy-Ion Reactions
1The Vector Probe in Heavy-Ion Reactions
Ralf Rapp Cyclotron Inst. Physics Dept. Texas
AM University College Station, Texas Hot
Quarks Workshop Taos Valley, 21.07.04
2Introduction I E.M. Probes in Strong Interactions
- g-ray spectroscopy of atomic nuclei collective
phenomena - DIS off the nucleon - parton model, PDFs
(high Q2) - - nonpert.
structure of nucleon JLAB - thermal emission - compact stars (?!)
- - heavy-ion
collisions - What is the electromagnetic spectrum of QCD
matter?
3Outline
1. Introduction 2. Four Pillars of
Electromagnetic Radiation 3. Dileptons 3.1
Low Mass - Axial-/Vector Correlator and Chiral
Symmetry - Medium
Effects and Excitation Function
- Lattice QCD 3.2 Intermediate Mass
QGP Radiation? 3.3 RHIC 4. Photons 4.1 QGP
and Hadron Gas Emission 4.2 SPS and RHIC
Phenomenology 5. Conclusions
4Introduction II Electromagnetic Emission Rates
E.M. Correlation Function
Im ?em(M,q)
Im ?em(q0q)
also e.m susceptibility (charge fluct) ?
?em(q00,q?0)
- In URHICs
- source strength dependence on T, mB, mp
medium effects, - system evolution V(t), T(t), mB(t)
transverse expansion, - nonthermal sources ee- Drell-Yan,
open-charm(!) g initial/ - consistency!
pre-equil.
52.) Four Pillars of Thermal E.M. Radiation
Thermal rate
q00.5GeV ? Tmax0.17GeV , q01.5GeV ?
Tmax0.5GeV
63.) Low-Mass Dileptons Chiral Symmetry
Im ?em(M) Im Dvec(M) vector-meson spectral
functions dominated by r-meson ? chiral
partner a1(1260)
Vacuum
pQCD cont.
Chiral breaking Q2 lt 3GeV2
73.1.1 Vector Mesons in Medium Many-Body Theory
Constraints - branching ratios B,M?rN,rp - gN,
gA absorpt., pN?rN - QCD sum rules, lattice
B,a1,K1...
N,p,K
8(ii) Vector Mesons at RHIC
93.1.2 Low-Mass Dileptons in URHICs
Top SPS Energy
- baryon effects important!
103.1.3 Current Status of a1(1260)
113.1.4 Comparison of Hadronic Models to LGT
123.2 Intermediate-Mass Dileptons NA50 (SPS)
e.m. corr. continuum-like Im ?em M2 (1as/p)
QGP HG!
133.3 Dilepton Spectrum at RHIC
144.) Thermal Photons
Quark-Gluon Plasma
Naïve LO q q (g) ? g (q) ?
But other contributions in O(as) collinear
enhanced Dg(t-mD2)-11/as
Bremsstrahlung Pair-ann.scatt.
ladder resummation (LPM)
Aurenche etal 00, Arnold,MooreYaffe 01
154.2 Comparison to Data I WA98 at SPS
Hydrodynamics QGP HG
Huovinen,RuuskanenRäsänen 02
- T0260MeV, QGP-dominated
- still true if pp?gX included
164.2 Comp. to Data II WA98 Low-qt Anomaly
Expanding Fireball Model
Turbide,RRGale04
- current HG rate much below
- 30 longer tFB ? 30 increase
174.2 Perspectives on Data III RHIC
Predictions for Central Au-Au
PHENIX Data
- large pre-equilibrium yield
- from parton cascade (no LPM)
- thermal yields consistent
- QGP undersat. small effect
- consistent with pQCD only
- disfavors parton cascade
- not sensitive to thermal yet
185.) Conclusions
- Thermal E.M. Radiation from QCD matter
- - hard high-E photons, intermediate-M
dileptons pQCD - QGP radiation?!
- - soft low-E g , low-M ll- Pem(M,q)
- chiral restoration?!
- extrapolations into phase transition region
- ? in-med HG and QGP shine equally bright
- lattice calculations? deeper reason?
- phenomenology for URHICs promising
- precision datatheory needed for definite
conclusions - much excitement ahead PHENIX, NA60, HADES,
ALICE, - and
theory!
19Additional Slides
202. Thermal Photon Radiation
2.1 Generalities
Emission Rate per 4-volume and 3-momentum
transverse photon selfenergy
many-body language
in-medium effects, resummations,
212.3.1 Hot Hadronic Matter p-r-a1 Gas
Chiral Lagrangian Axial/Vector-mesons, e.g. HLS
or MYM
- (g0,m0,s,x) fit to mr,a1 , Gr,a1
- D/S and G(a1?p?) not optimal
Song 93, Halasz etal 98,
- Photon-producing reactions
mostly at dominant (q0gt0.5GeV)
gauge invariance! q0lt0.5GeV a1-strength
problematic
222.3.1.b Hadronic Formfactors
- quantitative analysis account for finite
hadron size - improves a1 phenomenology
- t-channel exchange gauge invariance nontrivial
Kapusta etal 91 - simplified approach
Turbide,GaleRR 04
with
232.3.2 Further Meson Gas Sources
(i) Strangeness Contributions SU(3)F MYM
25 of pp???
40 of pr?p? !
(iii) Higher Resonances Ax-Vec a1,h1?pg,
Vec w,w,w?pg other p(1300)?pg
f1?rg , K1?Kg K?Kg
a2(1320)?pg
242.3.3 Baryonic Contributions
- use in-medium r spectral funct
- constrained by nucl. g-absorption
B,a1,K1...
N,p,K
252.3.3(b) Photon Rates from r Spectral
FunctionBaryons Meson-Resonances
- baryonic contributions
- dominant for q0lt1GeV
- (CERES enhancement!)
- also true at RHICLHC
-
- at T180MeV, mB0
mB220MeV
262.3.4 HG Emission Rates Summary
- w t-channel (very) important
- at high energy
- formfactor suppression (2-4)
- strangeness significant
- baryons at low energy
mB220MeV
Turbide,RRGale 04
272.3.5 In-Medium Effects
- many-body approach encoded in vector-spectral
function, -
relevant below M , q0 1-1.5 GeV - dropping masses
- large enhancement due
- to increased phase space
- SongFai 98, Alam etal 03
- unless
- vector coupling decreases
- towards Tc (HLS, a?1)
- HaradaYamawaki 01,
- Halasz etal 98
282.3.6 Hadron Gas vs. QGP Rate
- complete in-med QGP rate
- factor 2 larger than
- naïve LO QGP
- total HG rate (bottom-up)
- very similar to
- in-med QGP (top-down)
- quark-hadron duality ?
293.2 Thermal Evolution QGP? Mix? HG
QGP initial conditions SPS
- t01fm/c ? t00.5fm/c 2-3
- sCdQGT3 dQG40 ? 32 2
- pre-equilibrium?!
304.2 Non-Thermal Photon Sources
Initial hard production pp ? ?X
scaling with xT2pT /vs , power-law fit
Srivastava 01
31Photon Properties in Colorsuperconductors
322.2.4 In-Medium Baryons D(1232)
- ? long history in nuclear physics ! ( pA , gA
) - e.g. nuclear photoabsorption MD, GD up by
20MeV - ? little attention at finite temperature
- ? D-Propagator at finite rB and T van
Hees RR 04
33(ii) D(1232) in URHICs
? broadening Bose factor, pD?B ? repulsion
pDN-1, pNN-1
not yet included
(pN?D)
343.1 Continuity?!
E.M. Emission Rates
Light Hadron Masses
Shuryak, Zahed, Brown 04
352.2.6 Observables in URHICs
e e-
?
- (i) Lepton Pairs
(ii) Photons
Turbide,GaleRR 03
- consistent with dileptons
- pp Brems with soft s at low q?
baryon density effects!
363.3 Dilepton Spectrum at RHIC
374.3 Perspectives on Data III RHIC
Predictions for Central Au-Au
PHENIX Data
- large pre-equilibrium yield
- from parton cascade (no LPM)
- thermal yields consistent
- QGP undersat. small effect
- consistent with initial only
- disfavors parton cascade
- not sensitive to thermal yet
38(No Transcript)