Carbenes and Nitrenes: Application to the Total Synthesis of ( - PowerPoint PPT Presentation

1 / 49
About This Presentation
Title:

Carbenes and Nitrenes: Application to the Total Synthesis of (

Description:

Carbenes and Nitrenes: Application to the Total Synthesis of ( )-Tetrodotoxin Effiette Sauer March 18th 2004 Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 11510. – PowerPoint PPT presentation

Number of Views:1080
Avg rating:3.0/5.0
Slides: 50
Provided by: Effiett7
Category:

less

Transcript and Presenter's Notes

Title: Carbenes and Nitrenes: Application to the Total Synthesis of (


1
Carbenes and Nitrenes Application to the Total
Synthesis of ()-Tetrodotoxin
  • Effiette Sauer
  • March 18th 2004

Hinman, A. Du Bois, J. J. Am. Chem. Soc. 2003,
125, 11510.
2
What are Carbenes? Nitrenes?
  • Neutral, divalent carbon species containing six
    valence electrons
  • Neutral, monovalent nitrogen species containing
    six valence electrons

Highly reactive
Electron deficient
2
3
Carbene Formation
  • Diazoalkanes
  • Sulfonylhydrazones
  • Halides

3
4
Reactions of Carbenes
  • Addition reactions
  • Ylide formation
  • Insertion reactions

4
5
Singlet and Triplet States
Triplet
Singlet
Triplet
Singlet
  • sp2 hybridized carbon
  • non-bonding electrons have opposite spin -
    occupy an sp2 orbital
  • XCY angle 100-110
  • sp2 hybridized carbon (or sp?)
  • non-bonding electrons have same spin occupy an
    sp2 and p orbital
  • XCY angle 130-150

5
6
Singlet and Triplet States
Triplet
Singlet
Triplet
Singlet
6
7
Relative Stability of Singlet and Triplet States
  • Triplet more stable than singlet (RH, alkyl)

Singlet
Triplet
  • Unless, added stabilization possible (XO, N, S,
    halogen etc.)

7
8
Mode of Preparation Singlet vs. Triplet
Ionic Mechanism
Singlet
Photolysis
Singlet
Triplet
8
9
Singlet Carbenes React Stereospecifically
FMO interactions for cyclopropanation with
singlet carbene
Mechanism
Concerted
Stereospecific
9
10
Triplet Carbenes React Stereoselectively
Cyclopropanation with triplet carbenes - radical
mechanism
Two pathways
Stereoselective
10
11
Nitrene Formation
  • Azides
  • Iminoiodanes
  • Sulfonamides

11
12
Reactions of Nitrenes
  • Addition reactions1
  • Ylide formation2
  • Insertion reactions1

12
1 Lwowski, W. Angew. Chem. Int. Ed. Engl. 1967,
6, 897. 2 Albini, A. Bettinetti, G. Minoli, G.
J. Am. Chem. Soc., 1997, 119, 7308.
13
Free Carbenes/Nitrenes - Too Reactive
  • Free carbenes/nitrenes are highly reactive
    species ? low activation energy for product
    formation1

0 kcal A.E.
  • Generally too reactive to afford useful
    selectivity2

25 13
38 24
1 Zurawski, B. Kutzelnigg, W. J. Am. Chem. Soc.
1978, 100, 2654. 2 Richardson, D. B.. Simmons,
M. C. Dvoretzky. I. J. Am. Chem. Soc. 1961, 83,
1934.
13
14
Moderation of Reactivity
  • Intramolecular, rigid systems
  • Rearrangement reactions (e.g. Wolff, Curtius)

Concerted or stepwise depending on conditions
14
Majerski, Z. Hamersak, Z. Sarac-Arneri, R. J.
Org. Chem. 1988, 53, 5053.
15
Moderation of Reactivity
  • Binding of carbene/nitrene with a metal

Nitrenoid
Carbenoid
  • Tune reactivity by changing L, M, X, Y
  • Different species for 1) addition
  • 2) ylide formation
  • 3) insertion reactions
  • 4) and more (e.g. RCM)

15
16
Generation of the Metalloid
  • Treat carbene/nitrene precursor with transition
    metal ion
  • General mechanism

LnM ? electrophilic ? vacant
coordination site
16
17
Tuning the Catalyst for CH Insertion
  • Must tune electrophilicity of carbon atom to
    react selectively with inert
  • CH bonds

X, Y acceptor (EWG) donor (EDG)
or H
s acceptor? p donor?
p back bond
s bond
lone pair into empty d orbital
d orbital into empty p orbital
17
18
Tuning the Catalyst for CH Insertion
  • Must tune electrophilicity of carbon atom to
    react selectively with inert
  • CH bonds

X, Y acceptor (EWG) donor (EDG)
or H
s acceptor? p donor?
18
19
The Early Days
  • Early investigations focus on copper catalysts
    (e.g. CuSO4, CuOTf2)
  • synthetic use confined to rigid systems1,2

1 Burke, S. D. Grieco, P. A. Org. React. 1979,
26, 361. 2 Burns, W. McKervey, M. A. Mitchell,
T. R. B. Rooney, J. J. J. Am. Chem. Soc. 1978,
100, 906.
19
20
The Early Days
  • Early investigations focus on copper catalysts
    (e.g. CuSO4, CuOTf2)
  • synthetic use confined to rigid systems1,2
  • Teyssie and coworkers introduce dirhodium (II)
    tetraacetate3
  • Scope and utility of carbenoid insertion
    reactions explode4

3 Paulissenen, R. Reimlinger, H. Hayez, E.
Hubert, A. J. Teyssie, P. Tetrahedron Lett.
1973, 2233. 4 Wenkert, E. Davis, L. L.
Mylari, B. L. Solomon, M. F. Warnet, R. J.
Pellicciari, R. J. Org. Chem. 1982, 47, 3242.
20
21
Dirhodium (II) Catalysts
Electron withdrawing ligands ? increase
electrophilicity
Vacant site for carbene binding/ diazo
decomposition
Unique dirhodium bridge ? one Rh binds carbene,
other assists insertion1,2
1 Nakamura, E. Yoshikai, N. Yamanaka, M. J. Am.
Chem. Soc. 2002, 124, 7181. 2 Pirrung, M. C.
Liu, H. Morehead, A. T. Jr. J. Am. Chem. Soc.
2002, 124, 1014.
21
22
Insertion Mechanism
Doyle, M. P. Westrum, L. J. Wolthuis,W. N. E.
See, M. M. Boone, W. P Bagheri, V. Pearson, M.
M. J. Am. Chem. Soc. 1993, 115, 958.
22
23
Insertion Mechanism
  • Nakamura suggests Rh-Rh cleavage occurs during
    diazo decomposition
  • giving rise to two simultaneous events at the
    transition state
  • Hydride Transfer
  • Regeneration of the Rh-Rh bond
  • Role of dirhodium bridge is two-fold
  • Enhances electrophilicity of carbon
  • Assists in Rh-C cleavage

23
Nakamura, E. Yoshikai, N. Yamanaka, M. J. Am.
Chem. Soc. 2002, 124, 7181.
24
Insertion Mechanism
24
Nakamura, E. Yoshikai, N. Yamanaka, M. J. Am.
Chem. Soc. 2002, 124, 7181.
25
Trends in Selectivity
Build-up of positive charge in transition state ?
implications for selectivity
  • 3 gt 2 gt 1
  • adjacent heteroatoms favour insertion
  • EWGs hinder insertion

25
26
Trends in Selectivity
23
1
1 Taber, D. F. Ruckle, R. E. Jr. J. Am. Chem.
Soc. 1986, 108, 7686. 2 Adams, J Spero, D. M.
Tetrahedron 1991, 47, 1765. 3 Wang, P. Adams,
J. J Am. Chem. Soc. 1994, 116, 3296.
26
27
Trends in Selectivity
  • Five membered rings form preferentially

Chair-like t.s. gives five membered ring product1
? steric, electronic and conformational
influences may override this preference2
Five membered ring not observed
1 Taber, D. F. Ruckle, R. E. Jr. J. Am. Chem.
Soc. 1986, 108, 7686. 2 Lee, E. Choi, I. Song,
S. Y. J. Chem. Soc., Chem. Commun. 1995, 321.
27
28
Trends in Selectivity
  • The Hammond postulate Two species of similar
    energy occurring consecutively along a reaction
    coordinate will be similar in structure
  • High energy intermediates ? TS resembles
    intermediate
  • Low energy intermediates ? TS resembles the
    product

? lower energy intermediate ? later TS
? more charge build-up ? greater
selectivity
28
29
Trends in Selectivity
B
A
A
B
Rh2(pfb)4 32
68 Rh2(OAc)4 53
47 Rh2(acam)4
gt99 lt1
reactivity
Rh2(pfb)4
Rh2(OAc)4
Rh2(acam)4
selectivity
29
Doyle, M. P. Westrum, L. J. Wolthuis, W. N. E.
J. Am. Chem. Soc. 1993, 115, 958.
30
Trends in Selectivity in Summary
  • Preference for most electron rich CH bond
  • Five-membered ring formation preferred
  • Enhanced selectivity by decreasing reactivity of
    carbenoid

30
31
What about those Nitrenoids?
  • Certain Fe, Mn, and Ru porphyrin complexes
    catalyze CH insertion1
  • Mechanistic studies on Ru(Por)(NTs)2 suggest a
    radical intermediate2

1 Yu, X. Huang, J. Zhou, X. Che, C. Org. Lett.
2000, 2, 2233. 2 Au, S. Huang, J. Yu, W.
Fung, W. Che, C. J. Am. Chem. Soc. 1999, 121,
9120.
31
32
Good Ol Rhodium
  • Rhodium was initially ignored gave undesired
    insertion products (!)
  • In 2001, Du Bois capitalizes on Rhodiums
    preference for insertion1
  • Reaction is stereospecific

32
1 Du Bois, J. Espino, C. G. Angew. Chem. Int.
Ed. 2001, 40, 598.
33
()-Tetrodotoxin
  • Isolated from the Japanese puffer
  • fish (Sphaeroides rubripes) in 19091
  • Named after the puffer fish
  • family Tetraodontidae
  • LD50 10 ng/Kg mouse
  • Current interest in TTX as a
  • potent analgesic

33
1 Tahara, Y. J. Pharm. Soc. Jpn. 1909, 29, 587.
34
()-Tetrodotoxin
  • Relative stereochemistry assigned in 1964 by
    Hiratu-Goto1, Tsuda2, and Woodward3
  • Absolute stereochemistry established by X-ray in
    19704
  • First racemic synthesis by Kishi in 19725
  • Enantioselective syntheses by Isobe6 (Jan. 2003)
    and Du Bois7 (June 2003)

1Tetrahedron 1965, 21, 2059. 2Chem. Pharm. Bull.
1964, 12, 1357. 3Pure. Appl. Chem. 1964, 9, 49.
4Bull. Chem. Soc. Jpn. 1970, 43, 3332. 5aJ. Am.
Chem. Soc. 1972, 94, 9217. 5bJ. Am. Chem. Soc.
1972, 94, 9219. 6J. Am. Chem. Soc. 2003, 125,
8798. 7J. Am. Chem. Soc. 2003, 125, 11510.
34
35
Retrosynthesis
6 membered ring desired
35
36
Synthesis of ()-Tetrodotoxin
36
37
Synthesis of ()-Tetrodotoxin
Change PG if need be
Double bond to favour six membered ring
37
38
Synthesis of ()-Tetrodotoxin
A
B
B via
38
39
Synthesis of ()-Tetrodotoxin
A
B
B via
38
40
Synthesis of ()-Tetrodotoxin
A
B
38
41
Synthesis of ()-Tetrodotoxin
A
B
38
42
Synthesis of ()-Tetrodotoxin
39
43
Synthesis of ()-Tetrodotoxin
40
44
Synthesis of ()-Tetrodotoxin
41
45
Synthesis of ()-Tetrodotoxin
Only product
42
46
Synthesis of ()-Tetrodotoxin
43
47
Synthesis of ()-Tetrodotoxin
44
48
Conclusions
  • Completed the synthesis of ()-TTX in 32 steps,
    overall yield of 0.8,
  • average yield of 81
  • Used CH insertion to stereospecifically assemble
    quaternary carbon
  • centre at C6 and six-membered core ring of TTX
    in gt95 yield
  • Demonstrated the viability of their recently
    developed CH amination
  • reaction, forming the tertiary amine in 77
    yield
  • Reinforced the utility of carbenes and nitrenes
    as valuable
  • intermediates in organic synthesis

45
49
Acknowledgments
Dr. Louis Barriault Patrick Ang Steve
Arns Rachel Beingesser Roxanne Clément
Irina Denissova Julie Farand Nathalie
Goulet Christiane Grisé Roch Lavigne
Louis Morency Maxime Riou Jeff
Warrington Professor Justin Du Bois,
Andrew Hinman
Write a Comment
User Comments (0)
About PowerShow.com