Title: Carbenes and Nitrenes: Application to the Total Synthesis of (
1Carbenes and Nitrenes Application to the Total
Synthesis of ()-Tetrodotoxin
- Effiette Sauer
- March 18th 2004
Hinman, A. Du Bois, J. J. Am. Chem. Soc. 2003,
125, 11510.
2What are Carbenes? Nitrenes?
- Neutral, divalent carbon species containing six
valence electrons
- Neutral, monovalent nitrogen species containing
six valence electrons
Highly reactive
Electron deficient
2
3Carbene Formation
3
4Reactions of Carbenes
4
5Singlet and Triplet States
Triplet
Singlet
Triplet
Singlet
- sp2 hybridized carbon
- non-bonding electrons have opposite spin -
occupy an sp2 orbital - XCY angle 100-110
- sp2 hybridized carbon (or sp?)
- non-bonding electrons have same spin occupy an
sp2 and p orbital - XCY angle 130-150
5
6Singlet and Triplet States
Triplet
Singlet
Triplet
Singlet
6
7Relative Stability of Singlet and Triplet States
- Triplet more stable than singlet (RH, alkyl)
Singlet
Triplet
- Unless, added stabilization possible (XO, N, S,
halogen etc.)
7
8Mode of Preparation Singlet vs. Triplet
Ionic Mechanism
Singlet
Photolysis
Singlet
Triplet
8
9Singlet Carbenes React Stereospecifically
FMO interactions for cyclopropanation with
singlet carbene
Mechanism
Concerted
Stereospecific
9
10Triplet Carbenes React Stereoselectively
Cyclopropanation with triplet carbenes - radical
mechanism
Two pathways
Stereoselective
10
11Nitrene Formation
11
12Reactions of Nitrenes
12
1 Lwowski, W. Angew. Chem. Int. Ed. Engl. 1967,
6, 897. 2 Albini, A. Bettinetti, G. Minoli, G.
J. Am. Chem. Soc., 1997, 119, 7308.
13Free Carbenes/Nitrenes - Too Reactive
- Free carbenes/nitrenes are highly reactive
species ? low activation energy for product
formation1
0 kcal A.E.
- Generally too reactive to afford useful
selectivity2
25 13
38 24
1 Zurawski, B. Kutzelnigg, W. J. Am. Chem. Soc.
1978, 100, 2654. 2 Richardson, D. B.. Simmons,
M. C. Dvoretzky. I. J. Am. Chem. Soc. 1961, 83,
1934.
13
14Moderation of Reactivity
- Intramolecular, rigid systems
- Rearrangement reactions (e.g. Wolff, Curtius)
Concerted or stepwise depending on conditions
14
Majerski, Z. Hamersak, Z. Sarac-Arneri, R. J.
Org. Chem. 1988, 53, 5053.
15Moderation of Reactivity
- Binding of carbene/nitrene with a metal
Nitrenoid
Carbenoid
- Tune reactivity by changing L, M, X, Y
- Different species for 1) addition
- 2) ylide formation
- 3) insertion reactions
- 4) and more (e.g. RCM)
15
16Generation of the Metalloid
- Treat carbene/nitrene precursor with transition
metal ion
LnM ? electrophilic ? vacant
coordination site
16
17Tuning the Catalyst for CH Insertion
- Must tune electrophilicity of carbon atom to
react selectively with inert - CH bonds
X, Y acceptor (EWG) donor (EDG)
or H
s acceptor? p donor?
p back bond
s bond
lone pair into empty d orbital
d orbital into empty p orbital
17
18Tuning the Catalyst for CH Insertion
- Must tune electrophilicity of carbon atom to
react selectively with inert - CH bonds
X, Y acceptor (EWG) donor (EDG)
or H
s acceptor? p donor?
18
19The Early Days
- Early investigations focus on copper catalysts
(e.g. CuSO4, CuOTf2) - synthetic use confined to rigid systems1,2
1 Burke, S. D. Grieco, P. A. Org. React. 1979,
26, 361. 2 Burns, W. McKervey, M. A. Mitchell,
T. R. B. Rooney, J. J. J. Am. Chem. Soc. 1978,
100, 906.
19
20The Early Days
- Early investigations focus on copper catalysts
(e.g. CuSO4, CuOTf2) - synthetic use confined to rigid systems1,2
- Teyssie and coworkers introduce dirhodium (II)
tetraacetate3 - Scope and utility of carbenoid insertion
reactions explode4
3 Paulissenen, R. Reimlinger, H. Hayez, E.
Hubert, A. J. Teyssie, P. Tetrahedron Lett.
1973, 2233. 4 Wenkert, E. Davis, L. L.
Mylari, B. L. Solomon, M. F. Warnet, R. J.
Pellicciari, R. J. Org. Chem. 1982, 47, 3242.
20
21Dirhodium (II) Catalysts
Electron withdrawing ligands ? increase
electrophilicity
Vacant site for carbene binding/ diazo
decomposition
Unique dirhodium bridge ? one Rh binds carbene,
other assists insertion1,2
1 Nakamura, E. Yoshikai, N. Yamanaka, M. J. Am.
Chem. Soc. 2002, 124, 7181. 2 Pirrung, M. C.
Liu, H. Morehead, A. T. Jr. J. Am. Chem. Soc.
2002, 124, 1014.
21
22Insertion Mechanism
Doyle, M. P. Westrum, L. J. Wolthuis,W. N. E.
See, M. M. Boone, W. P Bagheri, V. Pearson, M.
M. J. Am. Chem. Soc. 1993, 115, 958.
22
23Insertion Mechanism
- Nakamura suggests Rh-Rh cleavage occurs during
diazo decomposition - giving rise to two simultaneous events at the
transition state - Hydride Transfer
- Regeneration of the Rh-Rh bond
- Role of dirhodium bridge is two-fold
- Enhances electrophilicity of carbon
- Assists in Rh-C cleavage
23
Nakamura, E. Yoshikai, N. Yamanaka, M. J. Am.
Chem. Soc. 2002, 124, 7181.
24Insertion Mechanism
24
Nakamura, E. Yoshikai, N. Yamanaka, M. J. Am.
Chem. Soc. 2002, 124, 7181.
25Trends in Selectivity
Build-up of positive charge in transition state ?
implications for selectivity
- 3 gt 2 gt 1
- adjacent heteroatoms favour insertion
- EWGs hinder insertion
25
26Trends in Selectivity
23
1
1 Taber, D. F. Ruckle, R. E. Jr. J. Am. Chem.
Soc. 1986, 108, 7686. 2 Adams, J Spero, D. M.
Tetrahedron 1991, 47, 1765. 3 Wang, P. Adams,
J. J Am. Chem. Soc. 1994, 116, 3296.
26
27Trends in Selectivity
- Five membered rings form preferentially
Chair-like t.s. gives five membered ring product1
? steric, electronic and conformational
influences may override this preference2
Five membered ring not observed
1 Taber, D. F. Ruckle, R. E. Jr. J. Am. Chem.
Soc. 1986, 108, 7686. 2 Lee, E. Choi, I. Song,
S. Y. J. Chem. Soc., Chem. Commun. 1995, 321.
27
28Trends in Selectivity
- The Hammond postulate Two species of similar
energy occurring consecutively along a reaction
coordinate will be similar in structure - High energy intermediates ? TS resembles
intermediate - Low energy intermediates ? TS resembles the
product
? lower energy intermediate ? later TS
? more charge build-up ? greater
selectivity
28
29Trends in Selectivity
B
A
A
B
Rh2(pfb)4 32
68 Rh2(OAc)4 53
47 Rh2(acam)4
gt99 lt1
reactivity
Rh2(pfb)4
Rh2(OAc)4
Rh2(acam)4
selectivity
29
Doyle, M. P. Westrum, L. J. Wolthuis, W. N. E.
J. Am. Chem. Soc. 1993, 115, 958.
30Trends in Selectivity in Summary
- Preference for most electron rich CH bond
- Five-membered ring formation preferred
- Enhanced selectivity by decreasing reactivity of
carbenoid
30
31What about those Nitrenoids?
- Certain Fe, Mn, and Ru porphyrin complexes
catalyze CH insertion1
- Mechanistic studies on Ru(Por)(NTs)2 suggest a
radical intermediate2
1 Yu, X. Huang, J. Zhou, X. Che, C. Org. Lett.
2000, 2, 2233. 2 Au, S. Huang, J. Yu, W.
Fung, W. Che, C. J. Am. Chem. Soc. 1999, 121,
9120.
31
32Good Ol Rhodium
- Rhodium was initially ignored gave undesired
insertion products (!)
- In 2001, Du Bois capitalizes on Rhodiums
preference for insertion1
- Reaction is stereospecific
32
1 Du Bois, J. Espino, C. G. Angew. Chem. Int.
Ed. 2001, 40, 598.
33()-Tetrodotoxin
- Isolated from the Japanese puffer
- fish (Sphaeroides rubripes) in 19091
- Named after the puffer fish
- family Tetraodontidae
- LD50 10 ng/Kg mouse
- Current interest in TTX as a
- potent analgesic
33
1 Tahara, Y. J. Pharm. Soc. Jpn. 1909, 29, 587.
34()-Tetrodotoxin
- Relative stereochemistry assigned in 1964 by
Hiratu-Goto1, Tsuda2, and Woodward3 - Absolute stereochemistry established by X-ray in
19704 - First racemic synthesis by Kishi in 19725
- Enantioselective syntheses by Isobe6 (Jan. 2003)
and Du Bois7 (June 2003)
1Tetrahedron 1965, 21, 2059. 2Chem. Pharm. Bull.
1964, 12, 1357. 3Pure. Appl. Chem. 1964, 9, 49.
4Bull. Chem. Soc. Jpn. 1970, 43, 3332. 5aJ. Am.
Chem. Soc. 1972, 94, 9217. 5bJ. Am. Chem. Soc.
1972, 94, 9219. 6J. Am. Chem. Soc. 2003, 125,
8798. 7J. Am. Chem. Soc. 2003, 125, 11510.
34
35Retrosynthesis
6 membered ring desired
35
36Synthesis of ()-Tetrodotoxin
36
37Synthesis of ()-Tetrodotoxin
Change PG if need be
Double bond to favour six membered ring
37
38Synthesis of ()-Tetrodotoxin
A
B
B via
38
39Synthesis of ()-Tetrodotoxin
A
B
B via
38
40Synthesis of ()-Tetrodotoxin
A
B
38
41Synthesis of ()-Tetrodotoxin
A
B
38
42Synthesis of ()-Tetrodotoxin
39
43Synthesis of ()-Tetrodotoxin
40
44Synthesis of ()-Tetrodotoxin
41
45Synthesis of ()-Tetrodotoxin
Only product
42
46Synthesis of ()-Tetrodotoxin
43
47Synthesis of ()-Tetrodotoxin
44
48Conclusions
- Completed the synthesis of ()-TTX in 32 steps,
overall yield of 0.8, - average yield of 81
- Used CH insertion to stereospecifically assemble
quaternary carbon - centre at C6 and six-membered core ring of TTX
in gt95 yield - Demonstrated the viability of their recently
developed CH amination - reaction, forming the tertiary amine in 77
yield - Reinforced the utility of carbenes and nitrenes
as valuable - intermediates in organic synthesis
45
49Acknowledgments
Dr. Louis Barriault Patrick Ang Steve
Arns Rachel Beingesser Roxanne Clément
Irina Denissova Julie Farand Nathalie
Goulet Christiane Grisé Roch Lavigne
Louis Morency Maxime Riou Jeff
Warrington Professor Justin Du Bois,
Andrew Hinman