Title: Wave propagation in structures with left-handed materials
1Wave propagation in structures with left-handed
materials
- Ilya V. Shadrivov
- Nonlinear Physics Group, RSPhysSE
- Australian National University, Canberra,
Australia - http//rsphysse.anu.edu.au/nonlinear/
- In collaboration with
- Yu. S. Kivshar, A. A. Sukhorukov, D. Neshev
2Outline
- Introduction Left-Handed Materials (LHM)
- Interfaces and surface waves
- Nonlinear properties of LHM
- Nonlinear surface waves
- Giant Goos-Hänchen effect
- Guided waves in a slab waveguide
- Photonic crystals based on LHM
- Presentations and publications
3Left-handed materials
- Materials with negative permittivity e and
negative permeability µ - Such materials support propagating waves
- Energy flow is backward with respect to the wave
vector
4Frequency dispersion of LH medium
- Energy density in dispersive medium
- Positivity of W requires
- LH medium is always dispersive
5The first experiment on LH media
- D.R.Smith, W.J.Padilla, D.C.Vier,
S.C.Nemat-Nasser and S.Schultz, Composite medium
with simultaneously negative permeability and
permittivity, Phys. Rev. Lett. 84, 4184 (2000) - Metamaterial
Effective medium approximation
Frequency range with elt0, µlt0 4 - 6Ghz
6Negative refraction at LH/RH interface
RH
LH
7Unusual lenses
LH lens does not have a diffraction resolution
limit Improved resolution is due to the surface
waves
- V. G. Veselago Soviet Physics Uspekhi 10 (4),
509-514 (1968) - J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)
8Surface waves of left-handed materials
z
RHM
LHM
x
9Guided modes
- TE-polarization
- TM-polarization
- Solutions for guided modes
I. V. Shadrivov, A. A. Sukhorukov, Yu. S.
Kivshar, A. A. Zharov, A. D. Boardman, and P.
Egan, submitted to Phys. Rev. E (2003)
10Energy flux at the interface
z
Total energy flux
RHM
LHM
P1
P2
PP1P2
Forward waves P gt 0 Backward waves P lt 0
11Existence regions of surface waves
- No regions where TE and TM waves exist
simultaneously - Waves can be both forward traveling and backward
traveling
12Dispersion of TE guided modes
Normalized frequency
Normalized wave number
- Waves can posses normal or anomalous dispersion
- Dispersion depends on the dielectric
permittivity of RH medium - Dispersion control in a nonlinear medium?
13Nonlinear properties of left-handed materials
- Metallic composite structure embedded into the
nonlinear dielectric
A. A. Zharov, I. V. Shadrivov, and Yu. S.
Kivshar, Phys. Rev. Lett. 91, 037401 (2003)
14Nonlinear dielectric properties of the composite
- Microscopic derivation in the effective medium
approximation
Contribution from nonlinear dielectric
Contribution from metallic wires
15Effective magnetic permeability
Effective medium approximation
16Magnetic properties of composite materialwith
self-focusing dielectric
Frequency
17Magnetic properties of composite materialwith
self-defocusing dielectric
Frequency
18Effective magnetic permeability
19Nonlinear properties management
- Composite completely filled by nonlinear
dielectric
20Nonlinear properties management
- Only resonator gaps are filled by nonlinear
dielectric
21Nonlinear properties management
- Composite completely filled by nonlinear
dielectric, but resonator gaps
22Nonlinear surface waves
RHM
LHM
Self-focusing
Self-focusing
I. V. Shadrivov, A. A. Sukhorukov, Yu. S.
Kivshar, A. A. Zharov, A. D. Boardman, and P.
Egan, submitted to Phys. Rev. E (2003)
23Nonlinear dispersion of surface wave
- The dispersion is multi-valued
- Two different types of surface waves
24Localized polaritons
Vg - the group velocity d - the group velocity
dispersion ? - the nonlinear coefficient
Energy flow has a vortex structure
25Energy flow in a pulse
26Surface waves
- We have revealed the unusual properties of
linear surface waves - Both TE and TM modes exist at a LH/RH interface
- Modal dispersion can be either normal or
anomalous - Total energy flow can be either positive and
negative - Wave packets have a vortex structure of the
energy flow
27Goos-Hänchen effect
A shift of the reflected beam from the position
predicted by geometric optics ? ltlt width of the
beam
28Giant Goos-Hänchen effect
29Giant Goos-Hänchen effect
LHM
30Resonant beam shift
31Energy flow at a negative beam shift
RHM
- Vortex
- surface wave excitation
Air
LHM
32Possible application
- Measure the angle of resonant shift
- Determine surface mode eigen wave number
- Calculate LH material parameters
33Negative refractive index waveguide
z
RHM
RHM
LHM
x
L
-L
34Guided modes in Negative Refractive Index
Waveguides
- TE-polarization
- TM-polarization
- Solutions for guided modes
I. V. Shadrivov, A. A. Sukhorukov and Yu. S.
Kivshar, Phys. Rev. E. 67, 057602-4 (2003)
35Dispersion of guided modes
- Fast and slow modes
- Fundamental mode may be absent
- Normal and anomalous dispersion
36Dispersion of guided modes
- Fast and slow modes
- Fundamental mode may be absent
- Normal and anomalous dispersion
37Sign-varying energy flux
PP1P2
Total energy flux
38Energy flow in a pulse
39Negative refractive index waveguide
- We have revealed the unusual properties of
guided modes in negative refractive index
waveguides such as - Both fast and slow modes exist in LH slab
waveguide - Modal dispersion can be either normal or
anomalous - Total energy flow can be either positive or
negative - Wave packets have a double vortex structure of
the energy flow
40Unusual lenses
- V. G. Veselago Soviet Physics Uspekhi 10 (4),
509-514 (1968) - J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)
41Periodic structure witha left-handed material
Photonic band gap appears in periodic structures
with zero averaged refractive index. J. Li, L.
Zhou, C. T. Chan, and P. Sheng, Phys. Rev. Lett.
90, 083901 (2003)
42Reflection from periodic structures
Bragg resonant reflection f2 - f1 2pm,
m1,2,3
43Band gap in 1D photonic crystal
Transfer Matrix Trace
Z-components of wavevectors in right- and
left-handed media
Wave impedances of right- and left-handed media
44Band gap structure
I.V. Shadrivov, A.A. Sukhorukov and Yu.S.
Kivshar, Appl. Phys. Lett. 82, 3820 (2003)
45Beam shaping
Gaussian beam oblique incidence
Vortex beam normal incidence
Vortex beam oblique incidence
46Transmission properties of the layered structure.
- We have analyzed transmission properties of a
layered periodic structure with left-handed
materials - We have shown the existence of narrow angular
transmission resonances embedded into a wide band
gap - We have suggested applications of the
transmission resonances for the beam shaping
47Oral presentations
- Ilya Shadrivov, Andrey Sukhorukov, and Yuri
Kivshar, Guided waves and beam transmission in
layered structures with left-handed materials,
K22.010, APS March Meeting, March 3-7, 2003
Austin, Texas, USA - Ilya Shadrivov, Andrey Sukhorukov, and Yuri
Kivshar, Guided modes in negative refractive
index waveguides, CMM5, CLEO/QELS, June 1-6,
2003, Baltimore Maryland, USA - Ilya Shadrivov, Andrey Sukhorukov, and Yuri
Kivshar, Beam shaping by a periodic structure of
left-handed slabs, QThN3, CLEO/QELS, June 1-6,
2003, Baltimore Maryland, USA - I. V. Shadrivov, A. A. Sukhorukov, Yu. S.
Kivshar, A. A. Zharov, A. D. Boardman, and P.
Egan, Surface Polaritons of Nonlinear Left-Handed
Materials, EB2-6-MON, CLEO/Europe EQEC 2003,
22-27 June, 2003, Munich, Germany
48Related publications
- I. V. Shadrivov, A. A. Sukhorukov, and Yu. S.
Kivshar, Phys. Rev. E 67, 057602-4 (2003) - A. A. Zharov, I. V. Shadrivov and Yu. S. Kivshar,
Phys. Rev. Lett. 91, 037401 (2003) - I. V. Shadrivov, A. A. Sukhorukov, and Yu. S.
Kivshar, Appl. Phys. Lett. 82, 3820 (2003) - I. V. Shadrivov, A. A. Sukhorukov, Yu. S.
Kivshar, A. A. Zharov, A. D. Boardman, and P.
Egan, submitted to Phys. Rev. E - I. V. Shadrivov, A. A. Zharov, and Yu. S.
Kivshar, Submitted to Appl. Phys. Lett.