The Chomsky Hierarchy - PowerPoint PPT Presentation

About This Presentation
Title:

The Chomsky Hierarchy

Description:

The man who said S6 is arriving the day after Sentence with ... morpheme, C = consonant, cor = coronal SYNTAX (phrase/sentence formation) ... – PowerPoint PPT presentation

Number of Views:414
Avg rating:3.0/5.0
Slides: 44
Provided by: staffUmE1
Category:

less

Transcript and Presenter's Notes

Title: The Chomsky Hierarchy


1
The Chomsky Hierarchy
2
SentencesThe sentence as a string of
wordsE.g I saw the lady with the
binoculars string a b c d e b f
3
  • The relations of parts of a string to each other
    may be different
  • I saw the lady with the binoculars
  • is stucturally ambiguous
  • Who has the binoculars?

4
  • I saw the lady with the binoculars
    a b c d e b fI saw the lady with the
    binoculars a b c d e b f

5
  • How can we represent the difference?
  • By assigning them different structures.
  • We can represent structures with 'trees'.
  • I
  • read
  • the book

6
  • a. I saw the lady with the binoculars S  
    NP VP  V NP 
    NP PP
  • I saw the lady with the binoculars I
    saw the lady with the binoculars

7
  • b. I saw the lady with the binoculars S  
    NP VP  VP PP 
  • I saw the lady with the binoculars I
    saw the lady with the binoculars

8
  • birds fly
  • S
  • NP VP
  • N V
  • birds fly
  • S ? NP VP
  • NP ? N
  • VP ? V

Syntactic rules
9
  • S
  •  
  • NP VP
  • birds fly
  • a b
  • ab string

10
  • S
  •  
  • A B
  • a b
  • ab
  • S ? A B
  • A ? a
  • B ? b

11
  • Rules
  •  
  • Assumption
  • natural language grammars are a rule-based
    systems
  •  
  • What kind of grammars describe natural language
    phenomena?
  •  
  • What are the formal properties of grammatical
    rules?
  •  

12
  • Chomsky (1957) Syntactic Struc-tures. The Hague
    Mouton
  •  
  • Chomsky, N. and G.A. Miller (1958) Finite-state
    languages Information and Control 1, 99-112
  •  
  • Chomsky (1959) On certain formal properties of
    languages. Information and Control 2, 137-167

13
Rules in Linguistics 1. PHONOLOGY /s/ ? ? ?
V ___V Rewrite /s/ as ? when /s/ occurs in
context V ____ V WithV auxiliary nodes,
? terminal nodes
14
Rules in Linguistics  2. SYNTAX S ? NP
VP VP ? V NP ? NRewrite S as NP VP in any
contextWith S, NP, VP auxiliary nodes V,
N terminal node
15
  • PHONOLOGY (sound system)
  •  
  • Maltese Word-final devoicing
  •  
  • Orthography Pronunciation
  • (spelling) (sound)
  •  
  • Sabet sab sa-bet sap
  • Hobza hobz hob-za hops
  • Vjaggi vjagg vjag-gi vjacc
  •  
  • voiced vd voiceless -vd
  • b, z, g p, s, c
  •  
  •  
  • vd ? -vd /____
  •  
  • (for end of word)

16
  • MORPHOLOGY (word formation)
  • Maltese Progressive assimilation in 3fsg
    imprefective (present)
  • Marker for verb in 3rd person feminine singular
    imperfective t- (3fsgimpf she)
  •  
  • e.g. she breaks t-kisser
  • I break n-kisser
  •  
  • t-kisser t-ressaq
  • 3fsg-break 3fsg-move
  • she breaks she moves
  •  
  • s-sakkar d-dur
  • 3fsg-lock 3fsg-turn
  • she locks she turns
  •  
  • t-sakkar t-dur
  •  
  • t ? s,d,etc. /____ s,d,etc.
  • cor

17
  • SYNTAX (phrase/sentence formation)
  •  
  • sentence
  •  
  • The boy kissed the girl
  • Subject predicate
  • noun phrase verb phrase
  • art noun verb noun phrase
  •  
  • S ? NP VP
  • VP ? V NP
  • NP ? ART N
  •  

18
  • SEMANTICS (meaning)
  •  
  • The lion attacks the hunter
  •  
  • attack (a, b)
  •  
  • a ?y attack (y, b)
  •  
  •  
  • ?z ?y attack (y, z) b
  •  
  • (with a the lion, b the hunter)
  •  

19
  • Chomsky Hierarchy
  •  
  • 0. Type 0 (recursively enumerable) languages
  • Only restriction on rules left-hand side cannot
    be the empty string ( Ø ? .)
  •  
  • 1. Context-Sensitive languages -
    Context-Sensitive (CS) rules
  •  
  • 2. Context-Free languages - Context-Free (CF)
    rules
  •  
  • 3. Regular languages - Non-Context-Free (CF)
    rules
  •  
  • 0 ? 1 ? 2 ? 3
  • a ? b meaning a properly includes b (a is a
    superset of b),
  • i.e. b is a proper subset of a or b is in a

20
  • Generative power
  • 0. Type 0 (recursively enumerable) languages
  • only restriction on rules left-hand side cannot
  • be the empty string ( Ø ? .)
  • - is the most powerful system
  • 3. Type 3(regular language)
  • - is the least powerful

21
Superset/subset relation
S1 S2
a c b d f g
a b
S1 is a subset of S2 S2 is a subset of S1
22
  • Rule Type 3
  •  Name Regular
  •  Example Finite State Automata (Markov-process
    Grammar)
  •  
  • Rule type
  • a) right-linear
  • A ? xB or
  • A ? x
  • with
  • A, B auxiliary nodes and
  • x terminal node
  •  
  • b) or left-linear
  • A ? Bx or
  • A ? x
  •  
  • Generates ambn with m,n ? 1
  •  
  • Cannot guarantee that there are as many as as
    bs no embedding

23
  • A regular grammar for natural language sentences
  •  
  • S ? the A
  •  
  • A ? cat B
  • A ? mouse B
  • A ? duck B
  •  
  • B ? bites C
  • B ? sees C
  • B ? eats C
  •  
  • C ? the D
  •  
  • D ? boy
  • D ? girl
  • D ? monkey
  •  
  • the cat bites the boy

24
  • Regular grammars
  •  
  • Grammar 1 Grammar 2
  • A ? a A ? a
  • A ? a B A ? B a
  • B ? b A B ? A b
  •  
  • Grammar 3 Grammar 4
  • A ? a A ? a
  • A ? a B A ? B a
  • B ? b B ? b
  • B ? b A B ? A b
  •  
  • Grammar 5 Grammar 6
  • S ? a A A ? A a
  • S ? b B A ? B a
  • A ? a S B ? b
  • B ? b b S B ? A b
  • S ? ? A ? a

25
  • Grammars non-regular
  •  
  • Grammar 6 Grammar 7
  • S ? A B A ? a
  • S ? b B A ? B a
  • A ? a S B ? b
  • B ? b b S B ? b A
  • S ? ?

26
  • Finite-State Automaton
  • article noun
  • NP NP1 NP2
  • adjective

27
  • NP
  • article NP1
  • adjective NP1
  • noun NP2
  • NP ? article NP1
  • NP1 ?adjective NP1
  • NP1 ? noun NP2

28
  • A parse tree
  • S root node
  • NP VP non-
  • terminal
  • N V NP nodes
  • DET N
  • terminal nodes

29
  • Rule Type 2
  •  
  • Name Context Free
  •  
  • Example
  • Phrase Structure Grammars/
  • Push-Down Automata
  •  
  •  
  • Rule type
  • A ? ?
  • with
  • A auxiliary node
  • ? any number of terminal or auxiliary nodes
  •  
  •  
  • Recursiveness (centre embedding) allowed
  • A ? ?A?

30
  • CF Grammar
  •  
  •  A Context Free grammar consists of
  •  
  • a) a finite terminal vocabulary VT
  •  
  • b) a finite auxiliary vocabulary VA
  •  
  • c) an axiom S ? VA
  •  
  • a finite number of context free rules of
  • form A ? ?,
  • where A ? VA
  • and ? ? VA ? VT
  •  
  • In natural language syntax S is interpreted as
    the start symbol for sentence, as in S ? NP VP

31
  • CF Grammars
  •  
  • The following languages cannot be generated by a
    regular grammar
  •  
  • Language 1 Language 2
  •  anbn mirror image
  •  
  • ab abaaba
  • aabb abbaabba
  • Context-Free rules
  • A ? a A a
  • A ? a b
  • A ? b A b

32
  • Natural language
  • Is English regular or CF?
  • If centre embedding is required, then it cannot
    be regular
  • Centre Embedding
  • 1. The cat likes tuna fish
  • a b
  • 2. The cat the dog chased likes tuna fish
  • a a b b
  • 3. The cat the dog the rat bit chased likes tuna
    fish
  • a a a b b b
  • 4. The cat the dog the rat the elephant admired
    bit chased likes tuna fish
  • a a a a
    b b b b
  •  ab
  • aabb

33
  • Centre embedding
  • S
  •   NP VP
  • the likes
  • cat tuna
  • a b
  • ab

34
  • S
  •   NP VP
  • likes
  • NP S tuna
  • the b
  • cat NP VP
  • a the chased
  • dog b
  • a
  • aabb

35
  • S
  •   NP VP
  • likes
  • NP S tuna
  • the b
  • cat NP VP
  • a chased
  • NP S b
  • the
  • dog NP VP
  • a the bit
  • rat b
  • a
  •  
  • aaabbb

36
  • Natural language
  • Is English regular or CF?
  •  
  • If centre embedding is required, then it cannot
    be regular
  •  

37
  • Centre Embedding
  • 1. The cat likes tuna fish
  • a b
  • ab
  •  
  • 2. The cat the dog chased likes tuna
    fish
  • a a b b
  • aabb

38
  • The cat likes tuna fish
  • a b
  • 2. The cat the dog chased likes ...
  • a a b b

39
  • 3. The cat the dog the rat bit
    chased likes ...
  • a a a b b
    b
  •  
  • The cat the dog the rat the elephant
    admired bit chased likes ....
  • a a a a
    b b b b
  •  
  • aaabbb
  • aaaabbbb

40
  • Natural language 2
  •  
  • More Centre Embedding
  •  
  • 1. If S1, then S2
  • a a
  •  
  • 2. Either S3, or S4
  • b b
  •  
  • 3. The man who said S5 is arriving today
  • ?
  •  
  • 4. The man who said S6 is arriving the day after
  • ?
  •  
  • Sentence with embedding
  • If either the man who said S5 is arriving today
    or the man who said S5 is arriving tomorrow, then
    the man who said S6 is arriving the day after
  •  

41
  • Natural language 2
  •  
  • More Centre Embedding
  •  
  •  
  • 1. If S1, then S2
  • a a
  •  
  • 2. Either S3, or S4
  • b b
  •  
  •  
  • Sentence with embedding
  •  
  • If either the man is arriving today or the woman
    is arriving tomorrow, then the child is arriving
    the day after.
  •  
  • a if
  • b either the man is arriving today
  • b or the woman is arriving tomorrow

42
  • CS languages
  •  
  • The following languages cannot be generated by a
    CF grammar (by pumping lemma)
  •  
  • anbmcndm
  •  
  •  
  • Swiss German
  •  
  • A string of dative nouns (e.g. aa), followed by a
    string of accusative nouns (e.g. bbb), followed
    by a string of dative-taking verbs (cc), followed
    by a string of accusative-taking verbs (ddd)
  •  
  •  
  • aabbbccddd
  •  
  • anbmcndm

43
  • Swiss German
  •   
  • Jan sait das (Jan says that)
  •  
  •  
  • mer em Hans es Huus hälfed aastriiche
  • we Hans/DAT the house/ACC helped paint
  • we helped Hans paint the house
  •  
  • abcd
  •  
  • NPdat NPdat NPacc NPacc Vdat Vdat Vacc Vacc
  • a a b b c c d d
Write a Comment
User Comments (0)
About PowerShow.com