QCD Phase Transitions in Dyson-Schwinger Equation Approach - PowerPoint PPT Presentation

1 / 41
About This Presentation
Title:

QCD Phase Transitions in Dyson-Schwinger Equation Approach

Description:

QCD Phase Transitions in Dyson-Schwinger Equation Approach Yuxin Liu Department of Physics, Peking University, China Outline I. Introduction – PowerPoint PPT presentation

Number of Views:174
Avg rating:3.0/5.0
Slides: 42
Provided by: phy96
Category:

less

Transcript and Presenter's Notes

Title: QCD Phase Transitions in Dyson-Schwinger Equation Approach


1
QCD Phase Transitions in Dyson-Schwinger
Equation Approach
  • Yuxin Liu
  • Department of Physics, Peking University, China
  • Outline
  • I. Introduction
  • ?. The Approach
  • ?. P.Ts. in Intrinsic Space in
    Medium
  • ?. Possible Observables
  • V . Summary

9th Workshop on QCD Phase Transitions Heavy Ion
Phys.,Hangzhou Normal University, 7. 18 20, 2011
2
I. Introduction
? The Evolution Process of the Universe
Quarks and gluons get confined ? Hadrons
Non-confined quarks and gluons and
leptons (F.S.) (F.S.B.)
Nuclear synthesis ? nuclei
3
? The Phase Transitions and Schematic PD
Phase Transitions involved Deconfinementconfinem
ent DCS DCSB Flavor Sym. FSB
Chiral Symmetric Quark deconfined
sQGP
?SB, Quark confined
4
? Theoretical Approaches Two kinds-Continuum
Discrete (lattice)
  • ? Lattice QCD
  • Running coupling behavior,
  • Vacuum Structure,
  • Temperature effect,
  • Small chemical potential
  • ? ? ?
  • ? Continuum
  • (1)Phenomenological models
  • NJL?QMC?QMF?
  • (2)Field Theoretical
  • Chiral perturbation,
  • Renormalization Group,
  • QCD sum rules,
  • Instanton(liquid) model,
  • DS equations ,
  • AdS/CFT,
  • HD(T)LpQCD ,
  • ? ? ?

The approach should manifest simultaneously (1)
DCSB its Restoration , (2) Confinement
Deconfinement .
5
? A comment on the DSE approach in QCD
QCD
C. D. Roberts, et al, PPNP 33 (1994), 477
45-S1, 1 (2000) EPJ-ST 140(2007), 53 R.
Alkofer, et. al, Phys. Rep. 353, 281 (2001)
C.S. Fischer, JPG 32(2006), R253 ?????? .
6
?. The Dyson-Schwinger Equation Approach
QCD
C. D. Roberts, et al, PPNP 33 (1994), 477
45-S1, 1 (2000) EPJ-ST 140(2007), 53 R.
Alkofer, et. al, Phys. Rep. 353, 281 (2001)
C.S. Fischer, JPG 32(2006), R253 ?????? .
7
? Practical Algorithm at Present Stage
  • ? Quark equation at zero chemical potential
  • where is the effective gluon
    propagator,
  • can be conventionally
    decomposed as

Meeting the requirements!
8
? Models of the Vertex
(1) Bare Vertex
  • (Rainbow-Ladder Approx.)

(2) Ball-Chiu Vertex
(3) Curtis-Pennington Vertex
(4) BCACM Vertex (Chang, Liu, Roberts, PRL 106,
072001 (11) )
9
? Effective Gluon Propagators
(1) MN Model
(2)
(3)
  • (2) Model

(3) More Realistic model
(4) An Analytical Expression of the Realistic
Model Maris-Tandy Model
(5) Point Interaction (P) NJL Model
10

?. The Phase Transitions in I.-S. in Medium
  • Chiral Susceptibility (?S ?SB phases
    simultaneously) Signature of the Chiral
    Phsae Transition

Point Interaction
?
?S Phase
Y. Zhao, L. Chang, W. Yuan, Y.X. Liu, Eur. Phys.
J. C 56, 483 (2008)
11
? Effect of the Running Coupling Strength
on the Chiral Phase Transition
(W. Yuan, H. Chen, Y.X. Liu, Phys. Lett. B 637,
69 (2006))
parameters are taken from Phys. Rev. D 65,
094026 (1997), with fitted as
Lattice QCD result PRD 72, 014507 (2005)
(BC Vertex L. Chang, Y.X. Liu, R.D. Roberts, et
al., Phys. Rev. C 79, 035209 (2009))
12
? Effect of the Current Quark Mass on the
Chiral Phase Transition
L. Chang, Y. X. Liu, C. D. Roberts, et al, Phys.
Rev. C 75, 015201 (2007) (nucl-th/0605058)
  • Solutions of the DSE with
  • Mass function

With ? 0.4 GeV
with D 16 GeV2, ? ? 0.4 GeV
13
Hep-ph/0612061
confirms the existence of the 3rd solution, and
give the 4th solution .
Euro. Phys. J. C 60, 47 (2009) gives the 5th
solution .
14
? Part of the QCD Phase Diagram in terms of
the Current Mass and Coupling Strength
  • ? The one with multi-node solutions is more
    complicated and more interesting.

15
? Special Topic (1) of the P.T. in Medium
Critical EndPoint (CEP)
The Position of CEP is a highly debated problem!
  • ? (p)NJL model others give quite large ?E/TE
    (gt 3.0)
  • Sasaki, et al., PRD 77, 034024 (2008)
    Costa, et al., PRD 77, 096001 (2008)
  • Fu Liu, PRD 77, 014006 (2008)
    Ciminale, et al., PRD 77, 054023 (2008)
  • Fukushima, PRD 77, 114028 (2008)
    Kashiwa, et al., PLB 662, 26 (2008)
  • Abuki, et al., PRD 78, 034034 (2008)
    Schaefer, et al., PRD 79, 014018 (2009)
  • Costa, et al., PRD 81, 016007 (2010)
    ???????
  • Hatta, et al., PRD 67, 014028 (2003)
    Cavacs, et al., PRD 77, 065016(2008)
  • ???????
  • ? Lattice QCD gives smaller ?E/TE ( 0.4 1.1)
  • Fodor, et al., JHEP 4, 050 (2004)
    Gavai, et al., PRD 71, 114014 (2005)
  • Gupta, arXiv0909.4630nucl-ex Li,
    et al., NPA 830, 633c (2009)
  • Gupta Xu, et al., Science 332, 1525
    (2011) ??????

? RHIC Exp. Estimate hints quite small ?E/TE ( ?
1) R.A. Lacey, et al.,
nucl-ex/0708.3512 ??????
  • ? Simple DSE Calculations with Different
    Effective Gluon Propagators Generate Different
    Results (0.0, 1.3)
  • Blaschke, et al, PLB 425, 232 (1998) He,
    et al., PRD 79, 036001 (2009) ??????
  • What can sophisticated DSE calculation produce ?
  • Why different models give distinct results ?

16
? Special topic (2) of the P.T. in Medium
Coexistence region (Quarkyonic ? )
  • ? Lattice QCD Calculation
  • de Forcrand, et al.,
  • Nucl. Phys. B Proc. Suppl. 153, 62
    (2006) ???

quarkyonic
  • and Generaal (large-Nc) Analysis
  • McLerran, et al., NPA 796, 83 (07)
  • NPA 808,
    117 (08)
  • NPA 824,
    86 (09), ???

claim that there exists a quarkyonic phase.

? Inconsistent with Coleman-Witten Theorem !!
? Can sophisticated continuous field approach of
QCD give the coexistence (quarkyonic) phase ?
? What can we know more for the coexistence
phase?
17
? Special Topic (3) of the P.T. in Medium
Quark Matter at T above but near Tc
  • HTL Cal. (Pisarski, PRL 63, 1129(89) Blaizot,
    PTP S168, 330(07)),
  • Lattice QCD (Karsch, et al., NPA 830, 223
    (09) PRD 80, 056001 (09))
  • NJL (Wambach, et al., PRD 81, 094022(2010))
  • Simple DSE Cal. (Fischer et al., EPJC 70,
    1037 (2010) ) show
  • there exists thermal Plasmino excitations
    in hot QM.
  • Other Lattice QCD Simulations
  • (Hamada, et al., Phys. Rev. D 81, 094506
    (2010)) claims
  • No qualitative difference between the quark
    propagators in the deconfined and confined phases
    near the Tc.
  • RHIC experiments (Gyulassy, et al., NPA 750, 30
    (2005) Shuryak,
  • PPNP 62, 48 (2009) Song, et al., JPG 36,
    064033 (2009) ) indicate
  • the matter is in sQGP state.

? What is the nature of the matter in DSE?
18
Phase Diagram of Strong Interaction Matter
in Present DSE Approach of QCD
Phase diagram in bare vertex
Phase diagram in BC vertex
S.X. Qin, L. Chang, H. Chen, Y.X. Liu, C.D.
Roberts, PRL 106, 172301(11)
19
? Model Parameter Dependence of the CEP
  • Small s ? short range in momentum space
  • ? long range in coordinate space

MN model ? infinite range in r-space
NJL model ?zero range in r-space
Longer range Int. ? Smaller ?E/TE
20
? Property of the matter above but near the Tc
  • Solving quarks DSE ? Quarks Propagator

In M-Space, only Yuan, Liu, etc, PRD 81, 114022
(2010). Usually in E-Space, Analytical
continuation is required.
  • Maximum Entropy
  • Method
  • (Asakawa, et al.,
  • PPNP 46,459 (2001)
  • Nickel, Ann. Phys. 322,
  • 1949 (2007))
  • Spectral
  • Function

Qin, et al., PRD 94, 014017(2011)
21
Disperse Relation and Momentum Dependence of the
Residues of the Quasi-particles poles at T3.0Tc
and T 1.1Tc
  • T 3.0Tc

T 1.1Tc
S.X. Qin, L. Chang, Y.X. Liu, C.D. Roberts, PRD
94, 014017(11)
22
Numerical Results
  • ? At high temperature (e.g., T 3.0Tc), there
    exists
  • Normal thermal mode Plasmino mode
    excitations.

At high momentum, the N.T. mode
plays the main role
behaves like free particle.
? At the temperature near but above the Tc
(e.g., T ? 1.4Tc), there exists a zero mode,
besides the N.T. mode and the P. mode.
? The zero mode exists at low momentum (lt7.0Tc),
and is long-range correlation (? ??1
gt?FP) .
? The quark at the T where ?S is restored
involves still rich phases. And the matter
is sQGP.
S.X. Qin, L. Chang, Y.X. Liu, C.D. Roberts, PRD
94, 014017(11)
23
?. Possible Observables
  • QCD Phase Transitions may Happen

QCD Phase Transitions
Signals for QCD Phase Transitions In Lab. Expt.
Jet Q., v2, Viscosity, ?, CC Fluct. Correl.,
Hadron Prop., In Astron. Observ. M-R
Rel., R.S., Rad., Inst. R. Oscil., Freq. G.
Oscil.,
24
Density Temperature Dependence of some
Properties of Nucleon in DSE Soliton Model
(Y. X. Liu, et al., NP A 695, 353
(2001) NPA 725, 127 (2003) NPA 750,
324 (2005) )

( Y. Mo, S.X. Qin, and Y.X. Liu, Phys. Rev. C
82, 025206 (2010) )
25
Temperature dependence of some properties of ?
?-mesons in the model with contact
interaction
( Wei-jie Fu, and Yu-xin Liu, Phys. Rev. D 79,
074011 (2009) )
? Fluctuation Correlation of Conserved Charges
( W.J. Fu, Y.X. Liu, Y.L. Wu, Phys. Rev. D 79,
014028 (2010) )
26
? Distinguishing Newly Born Strange
Quark Stars from Neutron Stars
  • Neutron Star RMF, Quark Star Bag Model
  • Frequency of g-mode
    oscillation

W.J. Fu, H.Q. Wei, and Y.X. Liu, arXiv
0810.1084, Phys. Rev. Lett. 101, 181102 (2008)
27
Taking into account the ?SB effect
28
  • Ott et al. have found
  • that these g-mode
  • pulsation of supernova
  • cores are very efficient
  • as sources of g-waves
  • (PRL 96, 201102 (2006) )
  • DS Cheng, R. Ouyed,
  • T. Fischer,

The g-mode pulsation frequency can be a signal to
distinguish the newly born strange quark stars
from neutron stars, i.e, an astronomical
signal of QCD phase transition.
29
? Coexistence Phase ? CEP (?E/TE
comparable with Lattice D EE) ? Effects of
the C.-Strength Current Mass
V. Summary Remarks
? Discussed some aspects of QCD phase transitions
in the DS equation approach of QCD
? Far from Well Established !
? Observables ?! ? Mechanism ?! Process
?! ? ? ?
Thanks !!
30
In DSE approach
Maris Roberts
31
Analytic Continuation from Euclidean Space
to Minkowskian Space
  • 0, ei?1,
  • gt E.S.
  • ?, ei??1,
  • gt M.S.

( W. Yuan, S.X. Qin, H. Chen, YXL, PRD 81,
114022 (2010) )
32
Three different solutions exist in chiral limit

M shifts upward too.
33
Chang, Liu, et al., Phys. Rev C 75, 015201 (2007)

M shifts upward too.
34
Chang, Liu, et al., Phys. Rev C 75, 015201 (2007)
35
Chang, Liu, et al., Phys. Rev C 75, 015201 (2007)
36
Hadron Structure
37
Some Numerical Results
38
? Effect of the F.-S.-B. (m0) on Mesons Mass
Solving the 4-dimenssional covariant B-S equation
with the kernel being fixed by the solution of
DS equation and flavor symmetry breaking, we
obtain
( L. Chang, Y. X. Liu, C. D. Roberts, et al.,
Phys. Rev. C 76, 045203 (2007) )
39
DSE Soliton Description of Nucleon
B. Wang, H. Chen, L. Chang, Y. X. Liu, Phys.
Rev. C 76, 025201 (2007)
Collective Quantization Nucl. Phys. A790, 593
(2007).
40
Compositions and Phase Structure of Compact Stars
and their Identification
  • Radio Pulses ? Neutron Stars

Composition Structure of NS are Still Under
Study !
41
????
Conjecture of the Composition of Compact Stars
  • ( F.Weber, PPNP 54, 193 (2005) )
Write a Comment
User Comments (0)
About PowerShow.com