Title: Bab 4
1Bab 4 Hukum-hukum gerakan
A tugboat, left, is a small but powerful ship
used primarily to tow larger ships in harbors or
inland waterways. How could such a small boat
moves a large object?
2Major Concepts
- Konsep daya
- Newton's First Law of Motion
- Jisim (intersia, graviti)
- Newton's Second Law of Motion
- Newton's Third Law of Motion
- Applikasi Hukum Newton
- Daya normal
- Daya geseran
3Daya
- Daya adalah agen yang menyebabkan perubahan dalam
halaju sesuatu objek - Dalam kata lain, daya adalah agen yang
menyebabkan pecutan kepada sesuatu objek
4Contoh-contoh daya yang bertindak.
Objek dalam kota adalah objek yang ditindak oleh
daya. Daya yang bertindak itu pula berasal
daripada agent luar daripada kotak itu
(persekitaran)
5Daya yang bertindak ke atas objek boleh jadi
tolak atau tarik
6Daya bersih
- Daya bersih ialah hasiltambah vektor kesemua daya
yang bertindak pada sesuatu objek - Ia juga dikenali daya jumlah (total force), daya
hasil (resultant force) atau daya tak
terseimbangkan (unbalanced force)
7Oleh kerana daya bersifat vektor, dua daya yang
bertindak secara simultaneously (F1,F2)setara
dengan daya bersih R (dan vice versa)
8Peleraian daya kepada komponen-komponen
9Contoh bergambah
Fx dan Fy adalah komponen-konponen leraian daya F
yang selari dan berserenjang dengan satah condong
10Daya bersih sifar
- Bila daya bersih ialah sifar
- pecutan sifar
- Halaju malar
- Keseimbangan berkalu jika daya bersih ialah sifar
- Jika objek dalam keadaan rehat akan kekal rehat
- Jika objek bergerak, it kekal bergerak pada
halaju malar
11Contoh Blok di atas meja yang pegun
Fup
Fbersih 0 ?kekal tak bergerak
Fdown
12Kelas daya
- Daya kontak (misalnya, tendangan bola) melibatkan
kontak secara fizikal anta dua objek untuk
interaksi berlaku - Daya medan bertindak melalui ruang (misalnya
daya graviti) - tak payah ada kontak fizikal
13Cara sukat daya
- Neraca spring boleh digunakan untuk menentukurkan
magnitud sesuatu daya - Unit daya ialah NewtonN kg.m/s2
14Vektor nature of force manifested via its
exertion on a spring scale
15Rangka inersia
- Apa-apa objek atau proses fizikal boleh
diperhatikan daripada mana-mana rangka rujukan
yang dipilih - Misalnya, dari kamar kamu ke, dari atas motosikal
(laju malar) ke, atau dari kapalterbang yang
sedang takeoff - Misalnya, memerhatikan seorang gadis cantik yang
sedang tidur nyenyak dari rangka-rangka rujukan
yang berlainan - rangka-rangka seperti kamar, motosikal laju malar
adalah rangka yang berbeza berbanding dengan
kapalterbang yang sedang take off - Dalam rangka rujukan kapalterbang, gadis tidur
itu tidak kelihatan halaju malar tapi memecut
relatif kepada rangka rujukan - Dalam rangka rujukan kamar, motosikal laju malar,
gadis tidur itu kelihatan berhalaju malar relatif
kepada rangka rujukan - Jadi, ada bezanya di antara rangka yang memecut
berbanding dengan rangka yang tidak memecut - Rangka yang tidak memecut (relatif kepada rangka
yang memecut) dipanggil rangka inersia
16- Apa-apa rangka inersia yang bergerak dengan
halaju malar relatif kepada suatu rangka inersia
yang diketahui, mereka juga merupakan
rangka-rangka inersia. - Secara praktiknya tiada rangka rujukan inersia
yang mutlak - Rangka rujukan yang bergerak dengan halaju malar
relatif kepada bintang jauh adalah penghampiran
rangka inersia terbaik - Bumi dianggap suatu rangka inersia yang baik
walaupun terdapat suatu pecutan memusat hasil
daripada gerakan kisaran di sekitar paksinya
17Quick quiz
- (a) Fikirkan suatu rangka bukan inertial yang you
pernah berehat di dalam - (b) Apakah pemerhatian dalam rangka tersebut yang
membawa anda kepada kesimpulan bahawa rangka itu
bukan inersial?
18Hukum Newton pertama
- Dalam ketidakhadiran daya luar, jika diperhatikan
dari suatu rangka inersia, sesuatu objek dalam
keadaan rehat tetap akan berehat dan objek dalam
gerakan tetap akan bergerak pada halaju malar - Hukum pertama memerihalkan apa yang berlaku dalam
ketidakhadiran daya bersih - Ia juga mengatakan bahawa jika tiada daya bersih
bertidak pada suatu objek pecutannya mestilah
sifar - Nota hukum ini hanya beraplikasi dalam rangka
inersia saje, tidak dalam rangka bukan inersia
19daya luar hampir sifar, gerak halaju malar
Ada daya luar
daya luar kurang tapi masih ada
20Figure 3-4, cummings
21Quick Quiz 5.1
Which of the following statements is most
correct? (a) It is possible for an object to
have motion in the absence of forces on the
object. (b) It is possible to have forces on an
object in the absence of motion of the object.
(c) Neither (a) nor (b) is correct. (d) Both
(a) and (b) are correct.
22Quick Quiz 5.1
Answer (d). Choice (a) is true. Newtons first
law tells us that motion requires no force an
object in motion continues to move at constant
velocity in the absence of external forces.
Choice (b) is also true. A stationary object can
have several forces acting on it, but if the
vector sum of all these external forces is zero,
there is no net force and the object remains
stationary.
23Jisim dan inersia
- Kecenderungan suatu objek untuk menentang usaha
mengubah halajunya dikenali inersia - Jisim ialah sifat sesuatu jasad/objek yang
menentukan berapa banyak penentangan objek itu
terhadap perubahan dalam halajunya - Lebih jisim lebih enggan ia berubah halajunya
terhadap daya luar
24Nota tambahan tentang jisim
- Jisim ialah sifat hakiki sesuatu jasad
- Jisim suatu jasad tidak bergantung persekitaran
yang ia berada - Jisim tidak bergantung kepada cara ia disukat
- Jisim suatu kuantiti skalar
- Unit SI jisim ialah kg
25Jisim vs. berat
- Jisim dan berat adalah dua jenis kuantiti yang
berlainan - Berat adalah bersamaan dengan magnitud daya
graviti bertindak ke atas sesuatu objek - Berat berubah-ubah mengikut lokasi, tapi jisim
tidak
261 kg standard beratnya 9.8 N di bumi tapi 1.6 N
aje di bulan
27Hukum Newton kedua
- Jika diperhatikan/dicerap daripada suatu rangka
inersia, pecutan suatu objek adalah berkadar
terus dengan daya bersih yang bertindak padanya,
dan berkadar songsang dengan jisimnya - Daya ialah sebab perubahan dalam pergerakan, yang
diukur oleh pecutannya - Secara algebra, SF m a
28Arah pecutan mengikut arah daya bersih
29Pecutan berkadar dengan daya bersih
30Untuk daya bersih yang sama, pecutan adalah
berkadar songsang dengan jisim
a1 ?F/m1
a2 ?F/m2
a3 ?F/(m1m2)
31Superbike dengan Newton II
- rekaan superbike mengaplikasikan hukum newton
kedua utk memaksimumkan pecutan ke depan
motosikal dicipata seringan yang mingkin (supaya
m kecil) dan menggunakan engin seberkuasa yang
mungkin (supaya daya memecut ke depan lebih besar)
32Hukum Newton dalam sebutan komponen
- Hukum Newton juga terexpres dalam sebutan
komponennya - SFx m ax
- SFy m ay
- SFz m az
33Quick Quiz 5.2
An object experiences no acceleration. Which of
the following cannot be true for the object? (a)
A single force acts on the object. (b) No forces
act on the object. (c) Forces act on the object,
but the forces cancel.
34Quick Quiz 5.2
Answer (a). If a single force acts, this force
constitutes the net force and there is an
acceleration according to Newtons second law.
35Quick Quiz 5.3
An object experiences a net force and exhibits an
acceleration in response. Which of the following
statements is always true? (a) The object moves
in the direction of the force. (b) The
acceleration is in the same direction as the
velocity. (c) The acceleration is in the same
direction as the force. (d) The velocity of the
object increases.
36Quick Quiz 5.3
Answer (c). Newtons second law relates only the
force and the acceleration. Direction of motion
is part of an objects velocity, and force
determines the direction of acceleration, not
that of velocity.
37Quick Quiz 5.4
You push an object, initially at rest, across a
frictionless floor with a constant force for a
time interval ?t, resulting in a final speed of v
for the object. You repeat the experiment, but
with a force that is twice as large. What time
interval is now required to reach the same final
speed v? (a) 4?t (b) 2?t (c) ?t (d) ?t/2 (e)
?t/4
38Quick Quiz 5.4
Answer (d). With twice the force, the object
will experience twice the acceleration. Because
the force is constant, the acceleration is
constant, and the speed of the object (starting
from rest) is given by v at. With twice the
acceleration, the object will arrive at speed v
at half the time.
39Contoh biji carom yang memecut (dalam satah
2-D)
40Daya graviti
- Daya graviti, Fg, adalah daya yang dikenakan ke
atas suatu objek oleh bumi - Daya itu berarah ke bawah dan menuju ke pusat
bumi - Magnitudnya dikenali sebagai berat objek itu
- Berat Fg mg
- pecutan yang terhasil akibat tindakan graviti ke
atas apa-apa objek adalah sama, g
41Pecutan objek jatuh bebas disebabkan oleh graviti
adalah malar dan universal, g
a g
42Nota tambahan berkenaan berat
- Disebabkan kesandarannya pada g, berat berubah
dengan lokasi - g, dan seterusnya berat, menjadi makin kurang
pada altitud yang lebih tinggi - Berat bukannya sifat hahiki sesuatu objek
43Jisim graviti vs. jisim inersia
- Jisim memainkan dua peranan yang berasing dalam
mekanik - Jisim dalam hukum Newton ialah jisim inersia yang
mengukur rintangan - Jisim inersia ditakrifkan sebagai pemalar kadar
(constant of proportionality) antara pecutan
dengan daya yang menyebabkannya. - Inilah apa yang dimaksudkan oleh m dalam F ma
44Jisim graviti vs. jisim inersia, samb
- Manakala, dalam daya tarikan graviti ke atas
suatu jasad oleh bumi, - Fg mgg
- Jisim mg ialah ialah pemalar kadar yang
menentukan berapa kuatnya daya graviti bertindak
di antara objek dengan Bumi - Lebih besar mg lebih kuatlah tarikan graviti oleh
bumi ke atas jasad itu
45Jisim graviti diukur
46Jisim inersial diukur
47Kesetaraan antara jisim inersia dan jisim graviti
- Eksperimen yang paling jitu telah menentukan,
setakat yang dibenarkan oleh teknologi hari ini,
bahawa jisim graviti bagi suatu objek adalah sama
nilai dengan jisim inersia objek itu - Penting kerana inilah titik tolak Einstein
mengemukakan teori kerelatifan amnya
48Quick Quiz 5.5
A baseball of mass m is thrown upward with some
initial speed. A gravitational force is exerted
on the ball (a) at all points in its motion (b)
at all points in its motion except at the highest
point (c) at no points in its motion
49Quick Quiz 5.5
Answer (a). The gravitational force acts on the
ball at all points in its trajectory.
50Quick Quiz 5.6
Suppose you are talking by interplanetary
telephone to your friend, who lives on the Moon.
He tells you that he has just won a newton of
gold in a contest. Excitedly, you tell him that
you entered the Earth version of the same contest
and also won a newton of gold! Who is richer?
(a) You (b) Your friend (c) You are equally
rich
51Quick Quiz 5.6
Answer (b). Because the value of g is smaller on
the Moon than on the Earth, more mass of gold
would be required to represent 1 newton of weight
on the Moon. Thus, your friend on the Moon is
richer, by about a factor of 6!
52Contoh konsep berapakan berat badan anda dalam
lif?
53Newtons Third Law
- If two objects interact, the force F12 exerted by
object 1 on object 2 is equal in magnitude and
opposite in direction to the force F21 exerted by
object 2 on object 1 - F12 - F21
- Note on notation FAB is the force exerted by A
on B
54Newtons Third Law, Alternative Statements
- Forces always occur in pairs
- A single isolated force cannot exist
- The action force is equal in magnitude to the
reaction force and opposite in direction - One of the forces is the action force, the other
is the reaction force - It doesnt matter which is considered the action
and which the reaction - The action and reaction forces must act on
different objects and be of the same type
55Action-Reaction Examples, 1
- The force F12 exerted by object 1 on object 2 is
equal in magnitude and opposite in direction to
F21 exerted by object 2 on object 1 - F12 - F21
56Action-Reaction Examples, 2
- The normal force (table on monitor) is the
reaction of the force the monitor exerts on the
table - Normal means perpendicular, in this case
- The action (Fg, Earth on monitor) force is equal
in magnitude and opposite in direction to the
reaction force, the force the monitor exerts on
the Earth
57Free Body Diagram
- In a free body diagram, you want the forces
acting on a particular object - The normal force and the force of gravity are the
forces that act on the monitor
58Quick Quiz 5.7
If a fly collides with the windshield of a
fast-moving bus, which object experiences an
impact force with a larger magnitude? (a) the
fly (b) the bus (c) the same force is
experienced by both
59Quick Quiz 5.7
Answer (c). In accordance with Newtons third
law, the fly and bus experience forces that are
equal in magnitude but opposite in direction.
60Quick Quiz 5.8
If a fly collides with the windshield of a
fast-moving bus, which object experiences the
greater acceleration? (a) the fly (b) the bus
(c) the same acceleration is experienced by both
61Quick Quiz 5.8
Answer (a). Because the fly has such a small
mass, Newtons second law tells us that it
undergoes a very large acceleration. The huge
mass of the bus means that it more effectively
resists any change in its motion and exhibits a
small acceleration.
62Quick Quiz 5.9
Which of the following is the reaction force to
the gravitational force acting on your body as
you sit in your desk chair? (a) The normal force
exerted by the chair (b) The force you exert
downward on the seat of the chair (c) Neither of
these forces
63Quick Quiz 5.9
Answer (c). The reaction force to your weight is
an upward gravitational force on the Earth due to
you.
64Quick Quiz 5.10
In a free-body diagram for a single object, you
draw (a) the forces acting on the object and the
forces the object exerts on other objects (b)
only the forces acting on the object
65Contoh konsep lu tolak gua dan gua tolau lu
66Quick Quiz 5.10
Answer (b). Remember the phrase free-body. You
draw one body (one object), free of all the
others that may be interacting, and draw only the
forces exerted on that object.
67Applications of Newtons Law
- Assumptions
- Objects can be modeled as particles
- Masses of strings or ropes are negligible
- When a rope attached to an object is pulling it,
the magnitude of that force, T, is the tension in
the rope - Interested only in the external forces acting on
the object - can neglect reaction forces
- Initially dealing with frictionless surfaces
68Objects in Equilibrium
- If the acceleration of an object that can be
modeled as a particle is zero, the object is said
to be in equilibrium - Mathematically, the net force acting on the
object is zero
69Equilibrium, Example 1a
- A lamp is suspended from a chain of negligible
mass - The forces acting on the lamp are
- the force of gravity (Fg)
- the tension in the chain (T)
- Equilibrium gives
70Equilibrium, Example 1b
- The forces acting on the chain are T and T
- T is the force exerted by the ceiling
- T is the force exerted by the lamp
- T is the reaction force to T
- Only T is in the free body diagram of the lamp,
since T and T do not act on the lamp
71Equilibrium, Example 2a
- Example 5.4
- Conceptualize the traffic light
- Categorize as an equilibrium problem
- No movement, so acceleration is zero
72Equilibrium, Example 2b
- Analyze
- Need two free-body diagrams
- Apply equilibrium equation to the light and find
T3 - Apply equilibrium equations to the knot and find
T1 and T2
73Objects Experiencing a Net Force
- If an object that can be modeled as a particle
experiences an acceleration, there must be a
nonzero net force acting on it. - Draw a free-body diagram
- Apply Newtons Second Law in component form
74Newtons Second Law, Example 1a
- Forces acting on the crate
- A tension, the magnitude of force T
- The gravitational force, Fg
- The normal force, n, exerted by the floor
75Newtons Second Law, Example 1b
- Apply Newtons Second Law in component form
- Solve for the unknown(s)
- If T is constant, then a is constant and the
kinematic equations can be used to more fully
describe the motion of the crate
76Note About the Normal Force
- The normal force is not always equal to the
gravitational force of the object - For example, in this case
- n may also be less than Fg
77Inclined Planes
- Forces acting on the object
- The normal force, n, acts perpendicular to the
plane - The gravitational force, Fg, acts straight down
- Choose the coordinate system with x along the
incline and y perpendicular to the incline - Replace the force of gravity with its components
78Contoh5.6Gen2 that runs away
79Multiple Objects
- When two or more objects are connected or in
contact, Newtons laws may be applied to the
system as a whole and/or to each individual
object - Whichever you use to solve the problem, the other
approach can be used as a check
80Multiple Objects, Example 1
- First treat the system as a whole
- Apply Newtons Laws to the individual blocks
- Solve for unknown(s)
- Check P21 P12
81Multiple Objects, Example 2
- Forces acting on the objects
- Tension (same for both objects, one string)
- Gravitational force
- Each object has the same acceleration since they
are connected - Draw the free-body diagrams
- Apply Newtons Laws
- Solve for the unknown(s)
82Multiple Objects, Example 3
- Draw the free-body diagram for each object
- One cord, so tension is the same for both objects
- Connected, so acceleration is the same for both
objects - Apply Newtons Laws
- Solve for the unknown(s)
83Problem-Solving Hints Newtons Laws
- Conceptualize the problem draw a diagram
- Categorize the problem
- Equilibrium (SF 0) or Newtons Second Law (SF
m a) - Analyze
- Draw free-body diagrams for each object
- Include only forces acting on the object
84Problem-Solving Hints Newtons Laws, cont
- Analyze, cont.
- Establish coordinate system
- Be sure units are consistent
- Apply the appropriate equation(s) in component
form - Solve for the unknown(s)
- Finalize
- Check your results for consistency with your
free- body diagram - Check extreme values
85Forces of Friction
- When an object is in motion on a surface or
through a viscous medium, there will be a
resistance to the motion - This is due to the interactions between the
object and its environment - This resistance is called the force of friction
86Forces of Friction, cont.
- Friction is proportional to the normal force
- ƒs µs n and ƒk µk n
- These equations relate the magnitudes of the
forces, they are not vector equations - The force of static friction is generally greater
than the force of kinetic friction - The coefficient of friction (µ) depends on the
surfaces in contact
87Forces of Friction, final
- The direction of the frictional force is opposite
the direction of motion and parallel to the
surfaces in contact - The coefficients of friction are nearly
independent of the area of contact
88Static Friction
- Static friction acts to keep the object from
moving - If F increases, so does ƒs
- If F decreases, so does ƒs
- ƒs ? µs n where the equality holds when the
surfaces are on the verge of slipping - Called impending motion
89Kinetic Friction
- The force of kinetic friction acts when the
object is in motion - Although µk can vary with speed, we shall neglect
any such variations - ƒk µk n
90Some Coefficients of Friction
91Quick Quiz 5.11
You press your physics textbook flat against a
vertical wall with your hand. What is the
direction of the friction force exerted by the
wall on the book? (a) downward (b) upward (c)
out from the wall (d) into the wall
92Quick Quiz 5.11
Answer (b). The friction force acts opposite to
the gravitational force on the book to keep the
book in equilibrium. Because the gravitational
force is downward, the friction force must be
upward.
93Quick Quiz 5.12
A crate is located in the center of a flatbed
truck. The truck accelerates to the east, and the
crate moves with it, not sliding at all. What is
the direction of the friction force exerted by
the truck on the crate? (a) to the west (b) to
the east (c) No friction force exists because
the crate is not sliding.
94Quick Quiz 5.12
Answer (b). The crate accelerates to the east.
Because the only horizontal force acting on it is
the force of static friction between its bottom
surface and the truck bed, that force must also
be directed to the east.
95Quick Quiz 5.13
You place your physics book on a wooden board.
You raise one end of the board so that the angle
of the incline increases. Eventually, the book
starts sliding on the board. If you maintain the
angle of the board at this value, the book (a)
moves at constant speed (b) speeds up (c) slows
down (d) none of these
96Quick Quiz 5.13
Answer (b). At the angle at which the book
breaks free, the component of the gravitational
force parallel to the board is approximately
equal to the maximum static friction force.
Because the kinetic coefficient of friction is
smaller than the static coefficient, at this
angle, the component of the gravitational force
parallel to the board is larger than the kinetic
friction force. Thus, there is a net downhill
force parallel to the board and the book speeds
up.
97Quick Quiz 5.14
You are playing with your daughter in the snow.
She sits on a sled and asks you to slide her
across a flat, horizontal field. You have a
choice of (1) pushing her from behind, by
applying a force downward on her shoulders at 30
below the horizontal (part a below), or (2)
attaching a rope to the front of the sled and
pulling with a force at 30 above the horizontal
(part b below). Which would be easier for you and
why? (a) 1, because the normal force between the
sled and the snow is increased (b) 1, because
the friction force between the sled and the snow
is decreased (c) 2, because the normal force
between the sled and the snow is increased (d)
2, because the friction force between the sled
and the snow is decreased
98Quick Quiz 5.14
Answer (b). When pulling with the rope, there is
a component of your applied force that is upward.
This reduces the normal force between the sled
and the snow. In turn, this reduces the friction
force between the sled and the snow, making it
easier to move. If you push from behind, with a
force with a downward component, the normal force
is larger, the friction force is larger, and the
sled is harder to move.
99Friction in Newtons Laws Problems
- Friction is a force, so it simply is included in
the SF in Newtons Laws - The rules of friction allow you to determine the
direction and magnitude of the force of friction
100Friction Example, 1
- The block is sliding down the plane, so friction
acts up the plane - This setup can be used to experimentally
determine the coefficient of friction - µ tan q
- For µs, use the angle where the block just slips
- For µk, use the angle where the block slides down
at a constant speed
101Friction, Example 2
- Draw the free-body diagram, including the force
of kinetic friction - Opposes the motion
- Is parallel to the surfaces in contact
- Continue with the solution as with any Newtons
Law problem
102Friction, Example 3
- Friction acts only on the object in contact with
another surface - Draw the free-body diagrams
- Apply Newtons Laws as in any other multiple
object system problem
103Applikasi Automobile Antilock Braking Systems
(ABS)
104Ringkasan
- students should understand each of the following
and be able to demonstrate their understanding in
problem applications as well as in conceptual
situations. - Force
- Vector nature of force
- Weight
- Normal force
- Mass
- Newton's laws
- First law (law of inertia)
- Second law (F ma)
- Third law (action-reaction force pairs)
105buatlah soalan-soalan tutorial untuk latihan dan
kefahaman