Title: Surface Area
1Surface Area
2- What am I learning today?
- Surface Area
- How will I show that I learned it?
- Find the surface area of right rectangular prisms
and cylinders by using manipulatives,
constructing nets, and using formulae.
3What is surface area?
- Surface area is the total area of all faces and
surfaces of a solid figure. We abbreviate surface
area as SA.
4How do we find the SA of a rectangular prism from
its net?
5What is the formula for SA of a rectangular prism?
- SA (2 x l x w) (2 x w x h) (2 x l x h)
L 3 m w 2 m h 5 m SA (2
x l x w) (2 x w x h) (2 x l x h) SA (2 x 3
x 2) (2 x 2 x 5) (2 x 3 x 5) SA 12 20
30 SA 62 m2
6You try it!
- SA (2 x l x w) (2 x w x h) (2 x l x h)
L 4 ft w 5 ft h 8 ft SA
(2 x l x w) (2 x w x h) (2 x l x h) SA (2 x
4 x 5) (2 x 5 x 8) (2 x 4 x 8) SA 40 80
64 SA 184 ft2
7How do we find the SA of a cube from its net?
8What is the formula for SA of a cube?
s 5 m SA 6 s2 SA 6 x 52 SA 6 x 25 SA
150 m2
9You try it!
s 7 in SA 6 s2 SA 6 x 72 SA 6 x 49 SA
294 in2
10How do you find the SA of a cylinder from its net?
11What is the formula for SA of a cylinder?
r 2 cm h 4 cm SA 2prh 2pr2 SA
(2 x 3.14 x 2 x 4) (2 x 3.14 x 22) SA (6.28
x 8) (6.28 x 4) SA 50.24 25.12 SA 75.36
cm2
12You try it!
r 3 cm h 5 cm SA 2prh 2pr2 SA
(2 x 3.14 x 3 x 5) (2 x 3.14 x 32) SA (6.28
x 15) (6.28 x 9) SA 94.2 56.52 SA 150.72
cm2
13Practice Problems