Title: Pagina 1
1FUNDAMENTALS OF SOLID PROPULSION
- PROS
- SIMPLE
- LONG-TERM STORABLE
- DESIGN CAN BE EASILY SCALED UP/DOWN
- CONS
- PERFORMANCE LOWER THAN LIQUID PROPULSION
- NO RE-IGNITION
D. Lentini Dipartimento di Ingegneria Meccanica e
Aerospaziale CVA Summer School, 06/07/2011
2PERFORMANCE INDICES
- EXHAUST EFFECTIVE VELOCITY c OR SPECIFIC IMPULSE
Isp - c F / m? (THRUST / MASS FLOW RATE, m/s)
- Isp F / w? F / (g0 m) (THRUST / WEIGHT FLOW
RATE, s) - ? Isp c / g0 c / 9,80665 ? 0,1 c (IN SI
UNITS) - STRUCTURAL COEFFICIENT ?s
- ?s ms / (mp ms) (ms STRUCTURAL MASS, mp
PROPELLANT MASS) - DESIDERATA (IN ORDER TO GET HIGH PAYLOAD MASS)
- HIGH c
- LOW?s
- WHILE KEEP ING COSTS DOWN!
06/07/2011
3EFFECTIVE EXHAUST VELOCITY c
- c CF c
- CF THRUST COEFFICIENT
- (DEPENDING ON NOZZLE EXPANSION RATIO ? Ae/A t,
AND RATIO CHAMBER/AMBIENT
PRESSURE) - c CHARACTERISTIC VELOCITY ? (Tc / M)1/2
- (DEPENDING ON COMBUSTION CHAMBER CONDITIONS)
- Ae NOZZLE EXIT AREA
- At NOZZLE THROAT AREA
- Tc COMBUSTION CHAMBER TEMPERATURE
- M MOLAR MASS OF COMBUSTION PRODUCTS
06/07/2011
4THRUST COEFFICIENT CF F/(pc At) vs. NOZZLE
EXPANSION RATIO ?, PARAMETER pc/pa
- MAX FOR ? SUCH THAT NOZZLE EXIT PRESSURE
AMBIENT PRESS.
06/07/2011
5c vs. ?s (IN VACUUM)
06/07/2011
6FAMILIES OF LAUNCHERS
- PAYLOAD CAPABILITY GROWTH VIA ADDITION OF
STRAP-ON BOOSTERS - SCALING OF SOLID BOOSTER RELATIVELY EASY
- PAYLOAD IN GTO
- Ariane 40 2000 kg
- Ariane 42P 2700 kg
- Ariane 42L 3300 kg
- Ariane 44P 3100 kg
- Ariane 44LP 3800 kg
- Ariane 44L 4300 kg
06/07/2011
7SOLID ROCKET MOTOR PERFORMANCE
- HIGHEST ACHIEVED SO FAR
- cS/L 2500 m/s (SEA LEVEL)
- cvac 2980 m/s (VACUUM)
- TO BE COMPARED TO
- cvac 4560 m/s (LIQUID CRYOGENIC)
- cvac 3520 m/s (CRYOGENIC OXIDIZER/STORABLE
FUEL) - cvac 3200 m/s (LIQUID STORABLE)
06/07/2011
8INTERNAL BALLISTICS
- STUDY OF THE BURNING CHARACTERISTICS OF THE
SOLID PROPELLANT GRAIN - PROPELLANT REGRESSION RATE r, DEPENDING ON
- GRAIN COMPOSITION
- CHAMBER PRESSURE pc
- INITIAL PROPELLANT TEMPERATURE Tp
- GAS VELOCITY ug ( GRAIN)
- USUALLY 4 lt r lt 12 mm/s
06/07/2011
9DE SAINT-ROBERTs LAW
- FOR Tp Tp0, ug?0
- r a pcn
- a, n DEPENDING ON GRAIN COMPOSITION
- n (COMBUSTION INDEX) GENERALLY IN BETWEEN 0,2 AND
0,8
06/07/2011
10EFFECT OF PROPELLANT TEMPERATURE Tp
- r INCREASES 0,1 TO 0,9 PER DEGREE K
- TOTAL IMPULSE I ? F dt NEARLY CONSTANT
06/07/2011
11EFFECT OF GAS VELOCITY ug (EROSIVE BURNING)
- IF ug ( GRAIN) gt 150 200 m/s, REGRESSION
RATE INCREASES
06/07/2011
12EQUILIBRIUM COMBUSTION CHAMBER PRESSURE
- MASS FLOW RATE COMBUSTION GASES NOZZLE FLOW
RATE - r ?p Ab a pcn ?p Ab
? pc At / (RTc)1/2 - ?p (SOLID) PROPELLANT DENSITY
- Ab BURNING AREA
- ? FUNCTION OF SPECIFIC HEATS RATIO ? cp / cv
- R GAS CONSTANT OF COMBUSTION PRODUCTS
- Tc COMBUSTION CHAMBER TEMPERATURE
- AT EQUILIBRIUM pc (a c ?p K)1/(1-n)
- K Ab /At KLEMMUNG
- (FRACTURES IN GRAIN LEAD TO EXPLOSION)
06/07/2011
13STABILITY OF EQUILIBRIUM CONDITIONS
- COMBUSTION INDEX n MUST BE lt 1 FOR STABILITY
06/07/2011
14THRUST EVOLUTION IN TIME
- DEPENDS ON BURNING SURFACE Ab(t)
- INCREASING Ab ? K ? pc ? F (AND VICEVERSA)
06/07/2011
15GRAIN DESIGN
- SIGARETTE, NEUTRAL
- TUBULAR, INTERNAL BURNING, PROGR.
- TUBULAR, EXTERNAL BURNING, REGR.
- STAR, NEUTRAL
- EXTRUDED, CAST, SEGMENTED
06/07/2011
16SLIVER
- UNBURNT PROPELLANT MUST BE ACCOUNTED FOR IN THE
STRUCTURAL MASS ms - IF EXACT LOCATION OF SLIVER IS KNOWN IN ADVANCE,
IT CAN BE REPLACED WITH LOW-DENSITY MATERIAL
06/07/2011
17THREE-DIMENSIONAL GRAIN DESIGNS
- TO ENSURE DESIRED THRUST PROFILE (e.g., TO LIMIT
PEAK DYNAMICAL PRESSURE DURING LAUNCHER ASCENT)
06/07/2011
18INSULATION AND LINER
- INSULATION TO CONTAIN CASE TEMPERATURE, AND
ENSUING LOSS OF MECHANICAL STRENGTH - LINER TO ENSURE THAT PROPELLANT SAFELY ADHERES
TO INSULATION (AVOID DEBONDING)
06/07/2011
19SOLID PROPELLANTS DESIDERATA
- HIGH Tc
- LOW M OF COMBUSTION PRODUCTS
- HIGH ?p
- LOW TEMPERATURE SENSITIVITY
- LIMITED EROSIVE BURNING
- EASY IGNITION
- GOOD MECHANICAL PROPERTIES
- THERMAL DILATATION COEFFICIENT CLOSE TO CASE
MATERIALS - LONG-TERM STABILITY
- SAFE HANDLI NG
- OPACITY TO RADIATION
- LOW COST
06/07/2011
20SOLID PROPELLANT FAMILIES
- DOUBLE BASE
- e.g., NITROGLYCERIN NITROCELLULOSE
- SMOKELESS (MILITARY APPLICATIONS)
- MAX c ? 2300 m/s
- DANGEROUS!
- COMPOSITE
- POWDERED OXIDIZER BINDER POWDERED METAL
- MAX c ? 2900 m/s (2980 m/s WITH EXTENDIBLE
NOZZLE) - ADOPTED IN SPACE APPLICATIONS
- LESS DANGEROUS
-
06/07/2011
21COMPOSITE PROPELLANT FORMULATION (1/2)
- OPTIMAL PERFORMANCE WOULD REQUIRE 80 90
OXIDIZER, BUT MECHANICAL PROPERTIES UNACCEPTABLE - OXIDIZER CONTENT LIMITED TO 70 80 MAX
- PROPELLANT DENSITY ?p ? 1800 kg/ m3
- n LOWER THAN IN DOUBLE BASE
- TWO-PHASE FLOW (DUE TO Al2O3) ?
- Tmelting 2350 K, Tboiling 3250 K
06/07/2011
22COMPOSITE PROPELLANT FORMULATION (2/2)
- OXIDIZERS
- AMMONIUM PERCHLORATE NH4ClO4 (AP)
- HIGHEST PERFORMANCE
- TOXIC COMBUSTION PRODUCTS (HCl)
- AMMONIUM NITRATE NH4NO3 (AN)
- SLIGHTLY LOWER PERFORMANCE
- RELATIVELY BENIGN COMBUSTION PRODUCTS
- BINDERS
- ASPHALT
- HTPB (HYDROXIL TERMINATED POLYBUTADIENE)
- PBAN (POLYBUTADIENE ACRYLIC ACID ACRYLONITRILE)
- METALS
- BERYLLIUM (VERY HIGH c, BUT EXTREMELY TOXIC)
- ALUMINUM (NO MORE THAN 20 ON MECHANICAL GROUNDS)
06/07/2011
23COMPOSITE PROPELLANTS TWO-PHASE FLOW
- CONICAL NOZZLES (HEAVIER, HIGHER LOSSES w.r.t.
BELL NOZZLES) - CONICAL
- BELL
- DAMPING EFFECT ON COMBUSTION PRESSURE
OSCILLATION (COMBUSTION INSTABILITY) - DUE TO VISCOUS COUPLING BETWEEN THE TWO PHASES
- VISCOELASTIC BEHAVIOUR OF GRAIN , AND
INCREASING CHAMBER SIZE, ALSO CONTRIBUTE TO
SMOOTH OSCILLATIONS
06/07/2011
24METAL POWDER SIZE
- SMALL PARTICLES BURN FASTER
- AVERAGE PARTICLE SIZE MUST BE TAILORED SO AS TO
SUPPRESS COMBUSTION PRESSURE OSCILLATIONS - HOWEVER, PARTICLE SIZE IS DISTRIBUTED OVER A RANGE
06/07/2011
25HEAT TRANSFER
- NO COOLANT AVAILABLE
- SHORT BURNING TIME
- ABLATIVE THERMAL PROTECTIONS IN MOST SENSITIVE
SECTIONS
06/07/2011
26EXERCISE ROD AND TUBE GRAIN (IN VACUUM)
- F 1000 kN, tb 60 s, ? 20, Tc 3000 K, pc
5 MPa, ? 1,25, - M25 kg/kmol, ug100 m/s, ?p 1800 kg/m3, a 10-7
m/(s Pan), n 0,7 - DETERMINE CF, c, c, m?(mass flow rate), mp
(propellant mass), At, Ae, r, b (web thickness),
K, Ab, D1, D2, D3, L (grain length), L/D3 -
10/02/2011
27ROD AND TUBE GRAIN (1/4)
- CF F / (pc At) ?2 ?/(?-1)? 1 - (pe/pc)
(?-1) /? 1/2 ? (pe/pc - pa/pc) - ? ? 1/2 2/(? 1)(?1)/2(?-1)
- pe/pc OBTAINED BY (ITERATIVELY) INVERTING
- ? Ae/At ? / 2? /(? -1) ? (pe/pc) 2/? 1-
(pe/pc) (?-1) /?1/2 - c pc At / m? (R0 Tc/M) 1/2 / ? R0 univ.
gas const. 8314 J/(kg K) - c CF c
- m? F / c
-
10/02/2011
28ROD AND TUBE GRAIN (2/4)
- mp m? tb (EXCL.
SLIVER) - At F / (CF pc), Ae ? At
- r a pcn (UNITS!)
- b 1,01 r tb (1
TO ACCOUNT FOR SLIVER) - K OBTAINED BY INVERTING
- pc (a c ?p K)1/(1-n)
- Ab K At
-
10/02/2011
29ROD AND TUBE GRAIN (3/4)
- ASSUME D0 b
- D1 D0 2 b, D3 D2 2 b
- D2 DETERMINED BY ENFORCING VALUE OF ug
- Ap ? (D22 - D12 ) / 4 (PORT AREA)
- m? ?c ug Ap, WITH ?c pc / (R Tc),
R R0 / M - L Ab / ? (D1 D2 )
- mp ?p Aweb L, WITH Aweb ? (D32 D22 D12
D02) / 4 -
10/02/2011
30ROD AND TUBE GRAIN (4/4)
- pe/pc 0,00507, CF 1,820, c 1540 m/s, c
2804 m/s, - m? 357 kg/s, mp 21627 kg, At 0,1099 m2,
Ae 2,198 m2, - r 4,89 mm/s, b 0, 2963 m, K 368, Ab
40,522 m2, - D0b, D1 0,889 m, D2 1,303 m, D3 1,896 m,
- L 5,884 m, L/D3 3,103
-
10/02/2011