Chapter 15 Alcohols, Diols, and Thiols - PowerPoint PPT Presentation

1 / 94
About This Presentation
Title:

Chapter 15 Alcohols, Diols, and Thiols

Description:

Alcohols, Diols, and Thiols Dr. Wolf's CHM 201 & 202 15-1 34 35 34 34 37 38 38 38 1 6 6 6 6 7 2 8 8 9 1 6 8 6 1 6 6 6 6 1 2 2 4 5 10 7 7 7 9 9 10 11 11 11 14 11 14 17 ... – PowerPoint PPT presentation

Number of Views:254
Avg rating:3.0/5.0
Slides: 95
Provided by: monte8
Category:

less

Transcript and Presenter's Notes

Title: Chapter 15 Alcohols, Diols, and Thiols


1
Chapter 15Alcohols, Diols, and Thiols
Dr. Wolf's CHM 201 202
15-1
2
Sources of Alcohols
Dr. Wolf's CHM 201 202
15-2
3
Methanol
  • Methanol is an industrial chemical
  • end uses solvent, antifreeze, fuel
  • principal use preparation of formaldehyde

Dr. Wolf's CHM 201 202
15-3
4
Methanol
  • Methanol is an industrial chemical
  • end uses solvent, antifreeze, fuel
  • principal use preparation of formaldehyde
  • prepared by hydrogenation of carbon monoxide

CO 2H2 CH3OH
Dr. Wolf's CHM 201 202
15-4
5
Ethanol
  • Ethanol is an industrial chemical
  • Most ethanol comes from fermentation
  • Synthetic ethanol is produced by hydrationof
    ethylene
  • Synthetic ethanol is denatured (madeunfit for
    drinking) by adding methanol, benzene,pyridine,
    castor oil, gasoline, etc.

Dr. Wolf's CHM 201 202
15-5
6
Other alcohols
  • Isopropyl alcohol is prepared by hydration of
    propene.
  • All alcohols with four carbons or fewer are
    readily available.
  • Most alcohols with five or six carbons are
    readily available.

Dr. Wolf's CHM 201 202
15-6
7
Sources of alcohols
Reactions discussed in earlier chapters (Table
15.1)
  • Hydration of alkenes
  • Hydroboration-oxidation of alkenes
  • Hydrolysis of alkyl halides
  • Syntheses using Grignard reagents organolithium
    reagents

Dr. Wolf's CHM 201 202
15-7
8
Sources of alcohols
New methods in Chapter 15
  • Reduction of aldehydes and ketones
  • Reduction of carboxylic acids
  • Reduction of esters
  • Reaction of Grignard reagents with epoxides
  • Diols by hydroxylation of alkenes

Dr. Wolf's CHM 201 202
15-8
9
Preparation of AlcoholsbyReduction of Aldehydes
and Ketones
Dr. Wolf's CHM 201 202
15-9
10
Reduction of Aldehydes Gives Primary Alcohols
Dr. Wolf's CHM 201 202
15-10
11
Example Catalytic Hydrogenation
Pt, ethanol

(92)
Dr. Wolf's CHM 201 202
15-11
12
Reduction of Ketones Gives Secondary Alcohols
R
C
O
R'
Dr. Wolf's CHM 201 202
15-12
13
Example Catalytic Hydrogenation
H
OH
Pt

H2
ethanol
(93-95)

Dr. Wolf's CHM 201 202
15-13
14
Retrosynthetic Analysis
H
H
Dr. Wolf's CHM 201 202
15-14
15
Metal Hydride Reducing Agents
Sodiumborohydride
Lithiumaluminum hydride
  • act as hydride donors

Dr. Wolf's CHM 201 202
15-15
16
Examples Sodium Borohydride
Aldehyde
NaBH4
CH2OH
methanol
(82)
Ketone

NaBH4
ethanol
(84)
Dr. Wolf's CHM 201 202
15-16
17
Lithium aluminum hydride
  • more reactive than sodium borohydride
  • cannot use water, ethanol, methanol etc.as
    solvents
  • diethyl ether is most commonly used solvent

Dr. Wolf's CHM 201 202
15-17
18
Examples Lithium Aluminum Hydride
Aldehyde
1. LiAlH4diethyl ether
CH3(CH2)5CH2OH
2. H2O
(86)
Ketone

1. LiAlH4diethyl ether
(C6H5)2CHCCH3
2. H2O
(84)
Dr. Wolf's CHM 201 202
15-18
19
Selectivity
  • neither NaBH4 or LiAlH4reduces isolateddouble
    bonds

1. LiAlH4diethyl ether
2. H2O
(90)
Dr. Wolf's CHM 201 202
15-19
20
Preparation of Alcohols By Reductionof
Carboxylic Acids and Esters
Dr. Wolf's CHM 201 202
15-20
21
Reduction of Carboxylic AcidsGives Primary
Alcohols
R
C
O
HO
  • lithium aluminum hydride is only effective
    reducing agent

Dr. Wolf's CHM 201 202
15-21
22
Example Reduction of a Carboxylic Acid
1. LiAlH4diethyl ether
2. H2O
(78)
Dr. Wolf's CHM 201 202
15-22
23
Reduction of EstersGives Primary Alcohols(Also
Chapter 19)
  • Lithium aluminum hydride preferred forlaboratory
    reductions
  • Sodium borohydride reduction is too slowto be
    useful
  • Catalytic hydrogenolysis used in industrybut
    conditions difficult or dangerous to duplicate
    in the laboratory (special catalyst,
    hightemperature, high pressure

Dr. Wolf's CHM 201 202
15-23
24
Example Reduction of an Ester
Dr. Wolf's CHM 201 202
15-24
25
Preparation of Alcohols From Epoxides
Dr. Wolf's CHM 201 202
15-25
26
Reaction of Grignard Reagentswith Epoxides
R
CH2
CH2
OMgX

H3O
RCH2CH2OH
Dr. Wolf's CHM 201 202
15-26
27
Example
CH2
H2C
CH3(CH2)4CH2MgBr


O
1. diethyl ether 2. H3O
CH3(CH2)4CH2CH2CH2OH
(71)
Dr. Wolf's CHM 201 202
15-27
28
Preparation of Diols
Dr. Wolf's CHM 201 202
15-28
29
Diols are prepared by...
  • reactions used to prepare alcohols
  • hydroxylation of alkenes

Dr. Wolf's CHM 201 202
15-29
30
Example reduction of a dialdehyde
H2 (100 atm)
Ni, 125C
3-Methyl-1,5-pentanediol
(81-83)
Dr. Wolf's CHM 201 202
15-30
31
Hydroxylation of AlkenesGives Vicinal Diols
  • vicinal diols have hydroxyl groups on adjacent
    carbons
  • ethylene glycol (HOCH2CH2OH) is most familiar
    example

Dr. Wolf's CHM 201 202
15-31
32
Osmium Tetraoxide is Key Reagent
  • syn addition of OH groups to each carbonof
    double bond

Dr. Wolf's CHM 201 202
15-32
33
Example
(73)
Dr. Wolf's CHM 201 202
15-33
34
Example
(CH3)3COOHOsO4 (cat)
tert-Butyl alcoholHO
(62)
Dr. Wolf's CHM 201 202
15-34
35
Reactions of AlcoholsA Review and a Preview
Dr. Wolf's CHM 201 202
15-35
36
Table 15.2 Review of Reactions of Alcohols
  • reaction with hydrogen halides
  • reaction with thionyl chloride
  • reaction with phosphorous tribromide
  • acid-catalyzed dehydration
  • conversion to p-toluenesulfonate esters

Dr. Wolf's CHM 201 202
15-36
37
New Reactions of Alcohols in This Chapter
  • conversion to ethers
  • esterification
  • esters of inorganic acids
  • oxidation
  • cleavage of vicinal diols

Dr. Wolf's CHM 201 202
15-37
38
Conversion of Alcohols to Ethers
Dr. Wolf's CHM 201 202
15-38
39
Conversion of Alcohols to Ethers
H
  • acid-catalyzed
  • referred to as a "condensation"
  • equilibrium most favorable for primary alcohols

Dr. Wolf's CHM 201 202
15-39
40
Example
2CH3CH2CH2CH2OH
CH3CH2CH2CH2OCH2CH2CH2CH3
(60)
Dr. Wolf's CHM 201 202
15-40
41
Mechanism of Formation of Diethyl Ether
Step 1
H
H



OSO2OH
CH3CH2O

H
Dr. Wolf's CHM 201 202
15-41
42
Mechanism of Formation of Diethyl Ether
Step 2

Dr. Wolf's CHM 201 202
15-42
43
Mechanism of Formation of Diethyl Ether
Step 3

Dr. Wolf's CHM 201 202
15-43
44
Intramolecular Analog
HOCH2CH2CH2CH2CH2OH
130
H2SO4
  • reaction normally works wellonly for 5- and
    6-memberedrings

(76)
Dr. Wolf's CHM 201 202
15-44
45
Intramolecular Analog
HOCH2CH2CH2CH2CH2OH
via
130
H2SO4
(76)
Dr. Wolf's CHM 201 202
15-45
46
Esterification(more on esters and other acid
derivatives in later chapters)
Dr. Wolf's CHM 201 202
15-46
47
Esterification
H


ROH
H2O
  • a condensation reaction
  • called Fischer esterification
  • acid catalyzed
  • reversible

Dr. Wolf's CHM 201 202
15-47
48
Example of Fischer Esterification
0.1 mol
0.6 mol (i.e. excess)

H2O
  • 70 yield based on benzoic acid

Dr. Wolf's CHM 201 202
15-48
49
Reaction of Alcohols with Acyl Chlorides


ROH
HCl
  • high yields
  • not reversible when carried outin presence of
    pyridine

Dr. Wolf's CHM 201 202
15-49
50
Example

pyridine
(63)
Dr. Wolf's CHM 201 202
15-50
51
Reaction of Alcohols with Acid Anhydrides


ROH
  • analogous to reaction with acyl chlorides

Dr. Wolf's CHM 201 202
15-51
52
Example
pyridine
(83)
Dr. Wolf's CHM 201 202
15-52
53
Esters of Inorganic Acids
Dr. Wolf's CHM 201 202
15-53
54
Esters of Inorganic Acids
ROH HOEWG
ROEWG H2O
EWG is an electron-withdrawing group

HONO2
(HO)2SO2
Dr. Wolf's CHM 201 202
15-54
55
Esters of Inorganic Acids
ROH HOEWG
ROEWG H2O
EWG is an electron-withdrawing group

HONO2
(HO)2SO2
CH3OH HONO2
CH3ONO2 H2O
(66-80)
Dr. Wolf's CHM 201 202
15-55
56
Oxidation of Alcohols
Dr. Wolf's CHM 201 202
15-56
57
Oxidation of Alcohols
Primary alcohols
RCH2OH
RCH
RCOH
Secondary alcohols
from H2O
RCR'
Dr. Wolf's CHM 201 202
15-57
58
Typical Oxidizing Agents
  • Aqueous solution
  • Mn(VII) Cr(VI)
  • KMnO4 H2CrO4
  • H2Cr2O7

Dr. Wolf's CHM 201 202
15-58
59
Aqueous Cr(VI)
FCH2CH2CH2CH2OH
H2SO4
K2Cr2O7
H2O
FCH2CH2CH2COH
(74)
Dr. Wolf's CHM 201 202
15-59
60
Aqueous Cr(VI)
FCH2CH2CH2CH2OH
H2SO4
K2Cr2O7
H2SO4
H2O
Na2Cr2O7
H2O
FCH2CH2CH2COH
(74)
(85)
Dr. Wolf's CHM 201 202
15-60
61
Nonaqueous Sources of Cr(VI)
  • All are used in CH2Cl2
  • Pyridinium dichromate (PDC)
  • (C5H5NH)2 Cr2O72
  • Pyridinium chlorochromate (PCC)
  • C5H5NH ClCrO3

Dr. Wolf's CHM 201 202
15-61
62
Example Oxidation of a primary alcohol with
PCC(pyridinium chlorochromate)
ClCrO3
PCC
CH3(CH2)5CH2OH
CH2Cl2
(78)
Dr. Wolf's CHM 201 202
15-62
63
Example Oxidation of a primary alcohol with
PDC(pryidinium dichromate)
PDC
CH2Cl2
(94)
Dr. Wolf's CHM 201 202
15-63
64
Mechanism
H
H
C
C
HOCrOH
CrOH
OH
O
  • involves formation and elimination of a chromate
    ester

Dr. Wolf's CHM 201 202
15-64
65
Mechanism
H
H
H
H
C
C
HOCrOH
CrOH
OH
O
  • involves formation and elimination of a chromate
    ester

Dr. Wolf's CHM 201 202
15-65
66
Biological Oxidation of Alcohols
Dr. Wolf's CHM 201 202
15-66
67
Enzyme-catalyzed

CH3CH2OH
alcohol dehydrogenase


Dr. Wolf's CHM 201 202
15-67
68
Figure 15.3 Structure of NAD
  • nicotinamide adenine dinucleotide (oxidized form)

Dr. Wolf's CHM 201 202
15-68
69
Enzyme-catalyzed

CH3CH2OH

Dr. Wolf's CHM 201 202
15-69
70
Enzyme-catalyzed
H
H

N
R
Dr. Wolf's CHM 201 202
15-70
71
Oxidative Cleavage of Vicinal Diols
Dr. Wolf's CHM 201 202
15-71
72
Cleavage of Vicinal Diols by Periodic Acid

C
Dr. Wolf's CHM 201 202
15-72
73
Cleavage of Vicinal Diols by Periodic Acid
HIO4

(83)
Dr. Wolf's CHM 201 202
15-73
74
Cyclic Diols are Cleaved
HIO4
Dr. Wolf's CHM 201 202
15-74
75
Preparation of Thiols
Dr. Wolf's CHM 201 202
15-75
76
Nomenclature of Thiols
  • 1) analogous to alcohols, but suffix is -thiol
    rather than -ol
  • 2) final -e of alkane name is retained, not
    dropped as with alcohols

Dr. Wolf's CHM 201 202
15-76
77
Nomenclature of Thiols
  • 1) analogous to alcohols, but suffix is -thiol
    rather than -ol
  • 2) final -e of alkane name is retained, not
    dropped as with alcohols

3-Methyl-1-butanethiol
Dr. Wolf's CHM 201 202
15-77
78
Properties of Thiols
  • 1. low molecular weight thiols have foul odors
  • 2. hydrogen bonding is much weaker in thiols
    than in alcohols
  • 3. thiols are stronger acids than alcohols
  • 4. thiols are more easily oxidized than
    alcohols oxidation takes place at sulfur

Dr. Wolf's CHM 201 202
15-82
79
Thiols are less polar than alcohols
Methanol
Methanethiol
bp 65C
bp 6C
80
Thiols are stronger acids than alcohols
  • have pKas of about 10 can be deprotonated in
    aqueous base




RS

stronger acid(pKa 10)
weaker acid(pKa 15.7)
Dr. Wolf's CHM 201 202
15-83
81
RS and HS are weakly basic and good
nucleophiles
82
Oxidation of thiols take place at sulfur
thiol (reduced)
disulfide (oxidized)
  • thiol-disulfide redox pair is important in
    biochemistry
  • other oxidative processes place 1, 2, or 3
    oxygen atoms on sulfur

Dr. Wolf's CHM 201 202
15-84
83
Oxidation of thiols take place at sulfur
thiol
disulfide


O


2
RS
OH
O




sulfinic acid
sulfenic acid
sulfonic acid
Dr. Wolf's CHM 201 202
15-85
84
Example sulfide-disulfide redox pair
SH
HSCH2CH2CH(CH2)4COH
O2, FeCl3
S
S
a-Lipoic acid (78)
(CH2)4COH
Dr. Wolf's CHM 201 202
15-86
85
Spectroscopic Analysis of Alcohols
Dr. Wolf's CHM 201 202
15-87
86
Infrared Spectroscopy
  • OH stretching 3200-3650 cm1 (broad)
  • CO stretching 1025-1200 cm1 (broad)

Dr. Wolf's CHM 201 202
15-88
87
Figure 15.4 Infrared Spectrum of Cyclohexanol
CH
OH
CO
Wave number, cm-1
Dr. Wolf's CHM 201 202
15-89
88
1H NMR
  • chemical shift of OH proton is variable
    depends on temperature and concentration
  • OH proton can be identified by adding D2O
    signal for OH disappears (converted to OD)

H
H
C
O
d 3.3-4 ppm
d 0.5-5 ppm
Dr. Wolf's CHM 201 202
15-90
89
Figure 15.5 (page 607)
Chemical shift (d, ppm)
Dr. Wolf's CHM 201 202
15-91
90
13C NMR
  • chemical shift of COH is d 60-75 ppm
  • CO is about 35-50 ppm less shielded than CH

CH3CH2CH2CH3
CH3CH2CH2CH2OH
d 13 ppm
d 61.4 ppm
Dr. Wolf's CHM 201 202
15-92
91
UV-VIS
Unless there are other chromophores in
themolecule, alcohols are transparent
aboveabout 200 nm lmax for methanol, for
example, is 177 nm.
Dr. Wolf's CHM 201 202
15-93
92
Mass Spectrometry of Alcohols
  • molecular ion peak is usually small
  • a peak corresponding to loss of H2Ofrom the
    molecular ion (M - 18) isusually present
  • peak corresponding to loss of analkyl group to
    give an oxygen-stabilized carbocation is
    usuallyprominent

Dr. Wolf's CHM 201 202
15-94
93
Mass Spectrometry of Alcohols
  • molecular ion peak is usually small
  • a peak corresponding to loss of H2Ofrom the
    molecular ion (M - 18) isusually present
  • peak corresponding to loss of analkyl group to
    give an oxygen-stabilized carbocation is
    usuallyprominent


CH2
OH

Dr. Wolf's CHM 201 202
15-95
94
End of Chapter 15
Write a Comment
User Comments (0)
About PowerShow.com