Title: Chapter 15 Alcohols, Diols, and Thiols
1Chapter 15Alcohols, Diols, and Thiols
Dr. Wolf's CHM 201 202
15-1
2Sources of Alcohols
Dr. Wolf's CHM 201 202
15-2
3Methanol
- Methanol is an industrial chemical
- end uses solvent, antifreeze, fuel
- principal use preparation of formaldehyde
Dr. Wolf's CHM 201 202
15-3
4Methanol
- Methanol is an industrial chemical
- end uses solvent, antifreeze, fuel
- principal use preparation of formaldehyde
- prepared by hydrogenation of carbon monoxide
CO 2H2 CH3OH
Dr. Wolf's CHM 201 202
15-4
5Ethanol
- Ethanol is an industrial chemical
- Most ethanol comes from fermentation
- Synthetic ethanol is produced by hydrationof
ethylene - Synthetic ethanol is denatured (madeunfit for
drinking) by adding methanol, benzene,pyridine,
castor oil, gasoline, etc.
Dr. Wolf's CHM 201 202
15-5
6Other alcohols
- Isopropyl alcohol is prepared by hydration of
propene. - All alcohols with four carbons or fewer are
readily available. - Most alcohols with five or six carbons are
readily available.
Dr. Wolf's CHM 201 202
15-6
7Sources of alcohols
Reactions discussed in earlier chapters (Table
15.1)
- Hydration of alkenes
- Hydroboration-oxidation of alkenes
- Hydrolysis of alkyl halides
- Syntheses using Grignard reagents organolithium
reagents
Dr. Wolf's CHM 201 202
15-7
8Sources of alcohols
New methods in Chapter 15
- Reduction of aldehydes and ketones
- Reduction of carboxylic acids
- Reduction of esters
- Reaction of Grignard reagents with epoxides
- Diols by hydroxylation of alkenes
Dr. Wolf's CHM 201 202
15-8
9Preparation of AlcoholsbyReduction of Aldehydes
and Ketones
Dr. Wolf's CHM 201 202
15-9
10Reduction of Aldehydes Gives Primary Alcohols
Dr. Wolf's CHM 201 202
15-10
11Example Catalytic Hydrogenation
Pt, ethanol
(92)
Dr. Wolf's CHM 201 202
15-11
12Reduction of Ketones Gives Secondary Alcohols
R
C
O
R'
Dr. Wolf's CHM 201 202
15-12
13Example Catalytic Hydrogenation
H
OH
Pt
H2
ethanol
(93-95)
Dr. Wolf's CHM 201 202
15-13
14Retrosynthetic Analysis
H
H
Dr. Wolf's CHM 201 202
15-14
15Metal Hydride Reducing Agents
Sodiumborohydride
Lithiumaluminum hydride
Dr. Wolf's CHM 201 202
15-15
16Examples Sodium Borohydride
Aldehyde
NaBH4
CH2OH
methanol
(82)
Ketone
NaBH4
ethanol
(84)
Dr. Wolf's CHM 201 202
15-16
17Lithium aluminum hydride
- more reactive than sodium borohydride
- cannot use water, ethanol, methanol etc.as
solvents - diethyl ether is most commonly used solvent
Dr. Wolf's CHM 201 202
15-17
18Examples Lithium Aluminum Hydride
Aldehyde
1. LiAlH4diethyl ether
CH3(CH2)5CH2OH
2. H2O
(86)
Ketone
1. LiAlH4diethyl ether
(C6H5)2CHCCH3
2. H2O
(84)
Dr. Wolf's CHM 201 202
15-18
19Selectivity
- neither NaBH4 or LiAlH4reduces isolateddouble
bonds
1. LiAlH4diethyl ether
2. H2O
(90)
Dr. Wolf's CHM 201 202
15-19
20Preparation of Alcohols By Reductionof
Carboxylic Acids and Esters
Dr. Wolf's CHM 201 202
15-20
21Reduction of Carboxylic AcidsGives Primary
Alcohols
R
C
O
HO
- lithium aluminum hydride is only effective
reducing agent
Dr. Wolf's CHM 201 202
15-21
22Example Reduction of a Carboxylic Acid
1. LiAlH4diethyl ether
2. H2O
(78)
Dr. Wolf's CHM 201 202
15-22
23Reduction of EstersGives Primary Alcohols(Also
Chapter 19)
- Lithium aluminum hydride preferred forlaboratory
reductions - Sodium borohydride reduction is too slowto be
useful - Catalytic hydrogenolysis used in industrybut
conditions difficult or dangerous to duplicate
in the laboratory (special catalyst,
hightemperature, high pressure
Dr. Wolf's CHM 201 202
15-23
24Example Reduction of an Ester
Dr. Wolf's CHM 201 202
15-24
25Preparation of Alcohols From Epoxides
Dr. Wolf's CHM 201 202
15-25
26Reaction of Grignard Reagentswith Epoxides
R
CH2
CH2
OMgX
H3O
RCH2CH2OH
Dr. Wolf's CHM 201 202
15-26
27Example
CH2
H2C
CH3(CH2)4CH2MgBr
O
1. diethyl ether 2. H3O
CH3(CH2)4CH2CH2CH2OH
(71)
Dr. Wolf's CHM 201 202
15-27
28Preparation of Diols
Dr. Wolf's CHM 201 202
15-28
29Diols are prepared by...
- reactions used to prepare alcohols
- hydroxylation of alkenes
Dr. Wolf's CHM 201 202
15-29
30Example reduction of a dialdehyde
H2 (100 atm)
Ni, 125C
3-Methyl-1,5-pentanediol
(81-83)
Dr. Wolf's CHM 201 202
15-30
31Hydroxylation of AlkenesGives Vicinal Diols
- vicinal diols have hydroxyl groups on adjacent
carbons - ethylene glycol (HOCH2CH2OH) is most familiar
example
Dr. Wolf's CHM 201 202
15-31
32Osmium Tetraoxide is Key Reagent
- syn addition of OH groups to each carbonof
double bond
Dr. Wolf's CHM 201 202
15-32
33Example
(73)
Dr. Wolf's CHM 201 202
15-33
34Example
(CH3)3COOHOsO4 (cat)
tert-Butyl alcoholHO
(62)
Dr. Wolf's CHM 201 202
15-34
35Reactions of AlcoholsA Review and a Preview
Dr. Wolf's CHM 201 202
15-35
36Table 15.2 Review of Reactions of Alcohols
- reaction with hydrogen halides
- reaction with thionyl chloride
- reaction with phosphorous tribromide
- acid-catalyzed dehydration
- conversion to p-toluenesulfonate esters
Dr. Wolf's CHM 201 202
15-36
37New Reactions of Alcohols in This Chapter
- conversion to ethers
- esterification
- esters of inorganic acids
- oxidation
- cleavage of vicinal diols
Dr. Wolf's CHM 201 202
15-37
38Conversion of Alcohols to Ethers
Dr. Wolf's CHM 201 202
15-38
39Conversion of Alcohols to Ethers
H
- acid-catalyzed
- referred to as a "condensation"
- equilibrium most favorable for primary alcohols
Dr. Wolf's CHM 201 202
15-39
40Example
2CH3CH2CH2CH2OH
CH3CH2CH2CH2OCH2CH2CH2CH3
(60)
Dr. Wolf's CHM 201 202
15-40
41 Mechanism of Formation of Diethyl Ether
Step 1
H
H
OSO2OH
CH3CH2O
H
Dr. Wolf's CHM 201 202
15-41
42 Mechanism of Formation of Diethyl Ether
Step 2
Dr. Wolf's CHM 201 202
15-42
43 Mechanism of Formation of Diethyl Ether
Step 3
Dr. Wolf's CHM 201 202
15-43
44Intramolecular Analog
HOCH2CH2CH2CH2CH2OH
130
H2SO4
- reaction normally works wellonly for 5- and
6-memberedrings
(76)
Dr. Wolf's CHM 201 202
15-44
45Intramolecular Analog
HOCH2CH2CH2CH2CH2OH
via
130
H2SO4
(76)
Dr. Wolf's CHM 201 202
15-45
46Esterification(more on esters and other acid
derivatives in later chapters)
Dr. Wolf's CHM 201 202
15-46
47Esterification
H
ROH
H2O
- a condensation reaction
- called Fischer esterification
- acid catalyzed
- reversible
Dr. Wolf's CHM 201 202
15-47
48Example of Fischer Esterification
0.1 mol
0.6 mol (i.e. excess)
H2O
- 70 yield based on benzoic acid
Dr. Wolf's CHM 201 202
15-48
49Reaction of Alcohols with Acyl Chlorides
ROH
HCl
- high yields
- not reversible when carried outin presence of
pyridine
Dr. Wolf's CHM 201 202
15-49
50Example
pyridine
(63)
Dr. Wolf's CHM 201 202
15-50
51Reaction of Alcohols with Acid Anhydrides
ROH
- analogous to reaction with acyl chlorides
Dr. Wolf's CHM 201 202
15-51
52Example
pyridine
(83)
Dr. Wolf's CHM 201 202
15-52
53Esters of Inorganic Acids
Dr. Wolf's CHM 201 202
15-53
54Esters of Inorganic Acids
ROH HOEWG
ROEWG H2O
EWG is an electron-withdrawing group
HONO2
(HO)2SO2
Dr. Wolf's CHM 201 202
15-54
55Esters of Inorganic Acids
ROH HOEWG
ROEWG H2O
EWG is an electron-withdrawing group
HONO2
(HO)2SO2
CH3OH HONO2
CH3ONO2 H2O
(66-80)
Dr. Wolf's CHM 201 202
15-55
56Oxidation of Alcohols
Dr. Wolf's CHM 201 202
15-56
57Oxidation of Alcohols
Primary alcohols
RCH2OH
RCH
RCOH
Secondary alcohols
from H2O
RCR'
Dr. Wolf's CHM 201 202
15-57
58Typical Oxidizing Agents
- Aqueous solution
- Mn(VII) Cr(VI)
- KMnO4 H2CrO4
- H2Cr2O7
-
Dr. Wolf's CHM 201 202
15-58
59Aqueous Cr(VI)
FCH2CH2CH2CH2OH
H2SO4
K2Cr2O7
H2O
FCH2CH2CH2COH
(74)
Dr. Wolf's CHM 201 202
15-59
60Aqueous Cr(VI)
FCH2CH2CH2CH2OH
H2SO4
K2Cr2O7
H2SO4
H2O
Na2Cr2O7
H2O
FCH2CH2CH2COH
(74)
(85)
Dr. Wolf's CHM 201 202
15-60
61Nonaqueous Sources of Cr(VI)
- All are used in CH2Cl2
- Pyridinium dichromate (PDC)
- (C5H5NH)2 Cr2O72
- Pyridinium chlorochromate (PCC)
- C5H5NH ClCrO3
Dr. Wolf's CHM 201 202
15-61
62Example Oxidation of a primary alcohol with
PCC(pyridinium chlorochromate)
ClCrO3
PCC
CH3(CH2)5CH2OH
CH2Cl2
(78)
Dr. Wolf's CHM 201 202
15-62
63Example Oxidation of a primary alcohol with
PDC(pryidinium dichromate)
PDC
CH2Cl2
(94)
Dr. Wolf's CHM 201 202
15-63
64Mechanism
H
H
C
C
HOCrOH
CrOH
OH
O
- involves formation and elimination of a chromate
ester
Dr. Wolf's CHM 201 202
15-64
65Mechanism
H
H
H
H
C
C
HOCrOH
CrOH
OH
O
- involves formation and elimination of a chromate
ester
Dr. Wolf's CHM 201 202
15-65
66Biological Oxidation of Alcohols
Dr. Wolf's CHM 201 202
15-66
67Enzyme-catalyzed
CH3CH2OH
alcohol dehydrogenase
Dr. Wolf's CHM 201 202
15-67
68Figure 15.3 Structure of NAD
- nicotinamide adenine dinucleotide (oxidized form)
Dr. Wolf's CHM 201 202
15-68
69Enzyme-catalyzed
CH3CH2OH
Dr. Wolf's CHM 201 202
15-69
70Enzyme-catalyzed
H
H
N
R
Dr. Wolf's CHM 201 202
15-70
71Oxidative Cleavage of Vicinal Diols
Dr. Wolf's CHM 201 202
15-71
72Cleavage of Vicinal Diols by Periodic Acid
C
Dr. Wolf's CHM 201 202
15-72
73Cleavage of Vicinal Diols by Periodic Acid
HIO4
(83)
Dr. Wolf's CHM 201 202
15-73
74Cyclic Diols are Cleaved
HIO4
Dr. Wolf's CHM 201 202
15-74
75Preparation of Thiols
Dr. Wolf's CHM 201 202
15-75
76Nomenclature of Thiols
- 1) analogous to alcohols, but suffix is -thiol
rather than -ol - 2) final -e of alkane name is retained, not
dropped as with alcohols
Dr. Wolf's CHM 201 202
15-76
77Nomenclature of Thiols
- 1) analogous to alcohols, but suffix is -thiol
rather than -ol - 2) final -e of alkane name is retained, not
dropped as with alcohols
3-Methyl-1-butanethiol
Dr. Wolf's CHM 201 202
15-77
78Properties of Thiols
- 1. low molecular weight thiols have foul odors
- 2. hydrogen bonding is much weaker in thiols
than in alcohols - 3. thiols are stronger acids than alcohols
- 4. thiols are more easily oxidized than
alcohols oxidation takes place at sulfur
Dr. Wolf's CHM 201 202
15-82
79Thiols are less polar than alcohols
Methanol
Methanethiol
bp 65C
bp 6C
80Thiols are stronger acids than alcohols
- have pKas of about 10 can be deprotonated in
aqueous base
RS
stronger acid(pKa 10)
weaker acid(pKa 15.7)
Dr. Wolf's CHM 201 202
15-83
81RS and HS are weakly basic and good
nucleophiles
82Oxidation of thiols take place at sulfur
thiol (reduced)
disulfide (oxidized)
- thiol-disulfide redox pair is important in
biochemistry - other oxidative processes place 1, 2, or 3
oxygen atoms on sulfur
Dr. Wolf's CHM 201 202
15-84
83Oxidation of thiols take place at sulfur
thiol
disulfide
O
2
RS
OH
O
sulfinic acid
sulfenic acid
sulfonic acid
Dr. Wolf's CHM 201 202
15-85
84Example sulfide-disulfide redox pair
SH
HSCH2CH2CH(CH2)4COH
O2, FeCl3
S
S
a-Lipoic acid (78)
(CH2)4COH
Dr. Wolf's CHM 201 202
15-86
85Spectroscopic Analysis of Alcohols
Dr. Wolf's CHM 201 202
15-87
86Infrared Spectroscopy
- OH stretching 3200-3650 cm1 (broad)
- CO stretching 1025-1200 cm1 (broad)
Dr. Wolf's CHM 201 202
15-88
87Figure 15.4 Infrared Spectrum of Cyclohexanol
CH
OH
CO
Wave number, cm-1
Dr. Wolf's CHM 201 202
15-89
881H NMR
- chemical shift of OH proton is variable
depends on temperature and concentration - OH proton can be identified by adding D2O
signal for OH disappears (converted to OD)
H
H
C
O
d 3.3-4 ppm
d 0.5-5 ppm
Dr. Wolf's CHM 201 202
15-90
89Figure 15.5 (page 607)
Chemical shift (d, ppm)
Dr. Wolf's CHM 201 202
15-91
9013C NMR
- chemical shift of COH is d 60-75 ppm
- CO is about 35-50 ppm less shielded than CH
CH3CH2CH2CH3
CH3CH2CH2CH2OH
d 13 ppm
d 61.4 ppm
Dr. Wolf's CHM 201 202
15-92
91UV-VIS
Unless there are other chromophores in
themolecule, alcohols are transparent
aboveabout 200 nm lmax for methanol, for
example, is 177 nm.
Dr. Wolf's CHM 201 202
15-93
92Mass Spectrometry of Alcohols
- molecular ion peak is usually small
- a peak corresponding to loss of H2Ofrom the
molecular ion (M - 18) isusually present - peak corresponding to loss of analkyl group to
give an oxygen-stabilized carbocation is
usuallyprominent
Dr. Wolf's CHM 201 202
15-94
93Mass Spectrometry of Alcohols
- molecular ion peak is usually small
- a peak corresponding to loss of H2Ofrom the
molecular ion (M - 18) isusually present - peak corresponding to loss of analkyl group to
give an oxygen-stabilized carbocation is
usuallyprominent
CH2
OH
Dr. Wolf's CHM 201 202
15-95
94End of Chapter 15