Title: Efficiency and Productivity
1Efficiency and Productivity
2Outline
- Introduction
- Economics
- Basic Concept
- Methodologies 1) Index Number2) Least Square3)
DEA4) SFA - Conclusion
3Introduction
- What is Productivity?
- What is Efficiency?
- Productivity
- Technical Efficiency
- Production Frontier
- Feasible Production Set
- Scale Economies
- Technical Change
4Productivity Growth
- Factors of Productivity Growth From One Year to
Next Year - Efficiency Improvement
- Technical Change
- Scale Economies
- Combination of Three Factors
5Economics
- Microeconomics Vs. Macroeconomics
- Production Economics (PE) Vs. Consumption
Economics(CE) - PE)Allocate resources such that Max. Profit
or Min.costCE)Allocate income such that Max.
utility or Min.expenditureHere we deal only
with PE
6Basic Concept
- Production Technology
gods
input
bads - Productivity output / input
7Production Frontier
8Feasible Production Set
- represent a firms production technology by f(x).
- All set on or below f(x) are feasible,while set
above f(x) are infeasible inpresent technology. - f(x) is called production frontier.
9Allocative Efficiency
10Overall Efficiency
- one output y was produced by a firm,which
utilized two inputs,x1 and x2. - AA is frontier,for firm D, technical
efficiencyOC/OD - If prices of inputs are known,we candefine
allocate efficiency by OB/OC(PP is isocost) - Overall eff.TEAE(OC/OD)(OB/OC)OB/OD
11Scale Effect
- Distinction between techeff.productivity
- Both B and C areon frontier,henceboth are
efficient. - But productivity ofC is greater than B (due to
scale effect).
12Methodologies
- 1.Index number methods
- 2.Least-square methods
- 3.Data Envelopment Analysis (DEA)
- 4.Stochastic Frontier Approach (SFP)
13Frontier and Non-FrontierParametric and
Non-Parametric
14Productivity Change
- a ratio type Productivity Index
- Py/x
- Partial factor productivity vs.Total factor
productivity - Paggregrate Y/aggregrate X
Paggregrate Y/x1 - productivity change PcYt/Ys/Yt/Xs
15Decomposition of a Simple TFP Index
- TFP Growth
- Real Product in Period t
- Homogeneous of degree
16Decomposition of a Simple TFP Index
- Change in Technical Efficiency
- Technical Change
- Effect of a Change in the Scale of Operations
- Scale of Operations
- Returns to Scale Parameter
17Output and Input Quantity Index
- utilizing only one input and produce one output?
- multiple inputs and multiple outputs
- Aggregrate Output output quantity index
- Aggregrate Input input quantity index
18Quantity Index
19Properties of Index Numbers
- Test Approach1).Positivity.2).Continuity3).Prop
ortionality4).Commensurability 5).Time-reversal
test.6).Mean-value test7).Factor-reversal
test.8).Circularity test(transitivity).
20Tornqvist and CCD Index
- Tornqvist index satisfies all properties list
above except (7)(8) - Index should satisfies transitivity, that is
IstIsr Irt(otherwise, cant be compared - Caves,Christensen and Diewert(CCD,1982) convert
Tornqvist indices into CCD indices as below,which
satisfies transitivity
21CCD Input Quantity Index
22CCD Output Quantity Index
23CCD Productivity Index
24Example Tornqvist Index
- Data for an artificial freight company
- Input(quantity)year labor capital other1996
145 67 391997 166 75 391998
162 78 431999 178 89
422000 177 93 51
25Input Price
- Input(price)year labor capital other1996
39 100 1001997 41 110
971998 42 114 1031999 46 121
1192000 46 142 122
26Output Quantity and Price
- output(quantity) Price year O1
O2 O1 O2 1996 471
293 27 181997 472 290
28 17 1998 477 278 34
171999 533 277 32 202000 567
289 34 23
27Tornqvist index number
- Tornqvist index numberobsn output input
TFP1 1.0000 1.0000 1.00002
0.9986 1.1007 0.90733 0.9960
1.1333 0.87884 1.0833 1.2340
0.87735 1.1468 1.3122 0.8740
TFP down 13
28The Total Productivity of Canadian Railways
- Tretheway,et.al (1997) The Total Productivity
of Canadian Railways - The paper measured TFP of CanadianNational(CN)Rai
lway Canadian Pacific Rail(CP) by
usingTornqvist TFP Index Number Method. - Input labor,fuelenergy,waystructure,
equipment,land,materialother. - Outputton-kmpass-km.
29The Result
- The Result showed
- for CN,TFP growth rate ()
1956-81 1981-91 11956-91 3.4
3.0 3.3 - for CP,TFP growth rate ()
1956-81 1981-91 11956-91 3.4
2.7 3.2
302.Least-square methods
- a firms production technology by yf(x)
- In practice, production function is never known.
- One can estimate production functionby using
Econometrics methods.
31Specify a Functional Form
- Before estimate,one should specify a functional
form. - The most famous functional form probably is
Cobb-Douglas Productionfunction. - The C-D function proposed in 1928 wasyAx1ax21-a
x1labor,x2capital
32Production Stages
- Neoclassical Production Function
- 3 stagesstage 10(MPPAPP)stage
2(MPPAPP)(MPP0)stage 3(MPPlt0)
33Restristions of CD Function
- Because of its simplicity,C-D fn. has beenwidely
used. - However,it can not represent 3-stage production
function. - Besides,it imposed some assumption(such
aselasticity of substitution1) to function. - Many economists devoted to find a flexible
functional form both from Primal and
Dual.Noteflexible--no priori assumption.
34Production and Cost Functions
- Primal---estimate production fns.Dual-----
estimate cost fns. - Specify function form (such as Translog,
Quadratic,Leontif,etc.)and estimate it to get
parameters. - For example,we specify Translog cost fn.as
follows.
35Translog Cost Function
- lnCa0aLlnPLaElnPEaFlnPFßYlnYßQlnQ?TTdKlnK
(1/2)aLL(lnPL)2aLElnPLlnPEaLFlnPLlnPF(1/2)aE
E(lnPE)2aEFlnPElnPF(1/2)aFF(lnPF)2?LYlnPLlnY?
EYlnPElnY?FYlnPFlnY?LQlnPLlnQ?EQlnPElnQ?FQlnP
FlnQ?LTlnPLT?ETlnPET?FTlnPFT?LKlnPLlnPk?EKl
nPElnPk?FKlnPFlnPk (1/2) ßYY(lnY)2 (1/2)
ßQQ(lnQ)2 (1/2) ?TT(T)2 (1/2) d KK(lnK)2
tYTTlnYµYKlnYlnK?YQlnYlnQ?QTTlnQpQKlnQlnK?T
KTlnK
36Properities
- Where,Ccost Y,QoutputPL,PE,PFinputTtime
trendKfixed factor. - A well-behavior cost fn.satisfy
someproperties,such as homogenous in degree
1,i.e. ?C(y,p)C(y, ?p)therefore, one get
aLaEaF1, aLLaLEaLF0aEE aEL
aEF0, aFFaFL aFE0 ?LY?EY?FY0,
?LQ?EQ?FQ0 ?LT?ET?FT0, ?LK?EK?FK0
37Shephards lemma
- By using Shephards lemma,one getcost share
eqs
38Parameter Estimation
- Estimating the cost share eqs.and translog cost
fn.silmutaneously,we getparameters.(using
computer program) - Then,we can compute1)Partial elasticities of
substitution.2)Prices elasticities of factor
demand.3)Economies of density.4)Productivity
growth.
393.DEA
- The two methods introduced above
arenon-frontier. - Now,we turn the topic to Frontier.
- The Frontier methods include1)Data Envelopment
Analysis(DEA)2)Stochastic Frontier Approach(SFA) - DEA involve mathematical programmingwhile SFA
using econometric methods.
40Distance Function
- Farrell (1957)proposedEconomic
eff.(EE)Technical eff.(TE)Allocative eff.(AE) - TEgiven input,max.output,or given
output,min.input. - AEgiven input prices,optimal cost,or given
output prices,optimal revenue.
41Input Oriented DEA
- Concept(input orientated)
TEiOQ/OP
AEiOR/OQ
EEiTEiAEi
OR/OP
42Output Orienrted DEA
- Concept(output orientated)
TEoOA/OB
AEoOB/OC
EEoTEoAEo
OA/OC
43Constant Returns to Scale
- For DMU Passume CRS,TEiAB/APTEoCP/CDTEiTEo
44Variable Returns to Scale
- While in case of VRS,TEi is not equal toTEo
- D
- A B P
- D
45 DEA Ratio Form
- Primal Form
-
-
for j 1,2,,n -
- ur?0 for r1,2,,s
- vi?0 for i1,2,,m
- Revised Form
46Envelopment Form
- Dual form and Technical Efficiency
47Pure Technical Efficiency
- SE TE / PTE
- OE TE AE PTE SE AE
48Overall Efficiency
49Decomposition of Technical Efficiency
- ????( )MN/MA
- ??????( )MB/MA
- ????( )MN/MB
50Implement
- Where thita is eff.score,Y,X are output and
input of all DMU,yi,xi are output and input of
i-th DMU,
51Example Data for CRS DEA
- An exampleAssume CRS,5 firms,1 output,2
inputsFirm y x1 x2 x1/y x2/y
52For Firm 3
- DEA frontier is the result of running 5LP
problems--one for each firm.
53CRS Input-Orientated DEA Results
54CRS Input-Orientated DEA Example
55Discussion
- Discussion1).TE of firm 3 is 0.833,i.e.it could
reduce all inputs(x1,x2) by 16.7.2).Reduction
of inputs, firm 3 project to 3 ,on a line
joining 2 and 5,3). The line joining 2 and 5 is
called Frontier ,firm 2 and 5 are referred
to as peers or targets
56Malmquist Productivity
- Yc
Efficiency Change -
- yt E
-
- Yb
- Ya Technical
Change - ys D
Frontier in period t
Frontier in period s
57Malmquist Productivity
- set of production possibilities
- Shephard output distance function
58Decomposition of Malmquist Productivity
- The productivity change taking the technology of
the period t as reference - The productivity change taking the technology of
the period t1 as reference
59Malmquist productivity change index
- Malmquist productivity change index
- efficiency change
- technical change
604.Stochastic Frontier
- CD Frontieryexp(xß)
- yi exp(xßvi)
- 1)if vigt0,above frontier
- 2)if vilt0,underfrontier
614.Stochastic Frontier
- Deterministic frontierAll observations must lie
on or belowthe frontier. - Stochastic frontierIf observations can be above
the frontier due to random events.
62 4.Stochastic Frontier
- Basic Stochastic Frontier modelor
ln(y)xßv-u - Where youtputs xinputs f(x, ß) is
the deterministic parts b are parameters to be
estimated v are random error u are
non-negative random variables which
represents inefficiencies.
634.Stochastic Frontier
644.Stochastic Frontier
- How to estimate exp(ui)?
- Specify some probability distribution form,such
as truncated normal. - Let p.d.f. of ui be g(x) and p.d.f. of vi
be h(x),thenjoint p.d.f. of ui and vi will be
g(x)h(x) - estimate by using maximum likelihood,one can
find tech. ineff.
65Conclusion Classification of four methods
Parametric Non-parametric
Frontier S.F.A. DEA
Non- frontier L.S. INDEX
66Methods and Its Properties
67(No Transcript)
68(No Transcript)
69(No Transcript)
70(No Transcript)
71(No Transcript)
72Conclusion(Index)
- Tornqvist indicesused to compare TFP across
time. - CCD indices-used to compare TFP across
DMUs.-or to compare TFP across DMUs and time.
73Conclusion(Index)
- Advantages over econometrics-only need two
observations(minimum).-easy to calculate.-does
not assume smooth tech.progress - Disadvantages-requires both price and quantity
information-cannot investigate biases in tech.
change and scale effects.
74Conclusion(L.S.)
- Using econometric methods
- Primal methods(estimate production fn.Dual
methods(estimate cost fn.) - Can measure technological change.
75Conclusion(DEA)
- Math-programming methods.
- Estimation of non-parametric frontiers.
- Used to compare eff. Across DMUs.
- Do not need price data.
- If price data are available,then one
cancalculate allocative eff.
76Conclusion(SFA)
- Econometric estimation of parametricfrontiers.
- Advantages over DEA-accounts for noise-can
conduct hypothesis test. - Disadvantages-need to specify a functional
form.-more difficult to accommodate multiple
outputs.