Title: S. Maekawa
1S. Maekawa (IMR, Tohoku University)
Spin, Charge and Orbital and their Excitations
in Transition Metal Oxides
(Hong Kong, Dec. 18, 2006)
Contents i) Spin-charge separation in
one-dimensional cuprates, ii) Non-linear
optical response due to spin-charge separation,
iii) Orbital in High Tc cuprates, iv)
Anomalous transport properties due to orbital,
v) Thermo-electric response due to spin and
orbital,
2Internal degrees of freedom of electron
Spin
Magnet
Charge
Electric Current
Orbital (Shape of wave function Shape of
electron)
3Hong Kong Conference December 18, 2006
Anomalous Electronic Lattices in Cobaltates
S. Maekawa, W. Koshibae and N. Bulut (IMR, Tohoku
University, Sendai)
4Co - Oxides in triangular lattice (NaxCoO2 and
NaxCoO2yH2O)
i) Review of Unconventional properties ii)
Orbital degeneracy in the frustrated lattice
crystal lattice vs. electron lattice unconvention
al properties
5In NaxCoO2,
x Co3 (3d6) and (1 - x) Co4 (3d5) in CoO6 units
CoO2 layer
Na layer
CoO2 layer
Na layer
6Superconductivity in water-intercalated
NaxCoO2yH2O
H2O
Na layer
K. Takada, H. Sakurai, E. Takayama-Muromachi, F.
Izumi, R.A. Dilanian, T. Sasaki, Nature 422, 53
(2003).
CoO2 layer
7(No Transcript)
8In cubic CoO6 units,
Co3
Co4
eg
NaxCoO2
t2g
Co3 (3d6) S 0
Co4 (3d5) S 1/2
5 - 3d orbitals
z
eg
y
d(x2?y2)
x
d(3z2?r2)
t2g
d(xy)
d(yz)
d(zx)
9- Anomalous physical properties in CoO2 layer
- Giant Hall effect at T ? R.T. NaxCoO2 (Y.
Wang, et al., cond-mat/0305455) - Ferromagnetism Bi2-xPbxSr2O4yCoO2, Tc 3.2
K (I. Tsukada et al., J. Phys. Soc. Jpn. 70,
834 (01).) - Giant thermopower at T ? R.T. NaxCoO2 (I.
Terasaki, Y. Sasago, and K. Uchinokura, PRB56,
12685(97).) Bi2-xPbxSr2O4yCoO2 (T.
Yamamoto et al., Jpn. J. Appl. Phys. 39, L747
(00).) Ca3Co4O9 (A. C. Masset et al., PRB62,
166 (00).) - Superconductivity NaxCoO2yH2O (K. Takada et
al., Nature 422, 53 (03).) - Charge ordering NaxCoO2 (Foo et al.,
cond-mat/0312174) - Antiferromagnetism
- Na0.5CoO2
- (T. Uemura et al.)
10I. Terasaki, Y. Sasago, and K. Uchinokura,
PRB56, 12685(97).
Y. Wang et al., cond-mat/0305455
11Novel physics in CoO2 layer with triangular
structure
- Kagomé lattice hidden in CoO2 layer(WK and SM
PRL 91, 257003 (03), NB, WK and SM PRL 95,
037001 (05)) - Anomalous physical properties -
Superconductivity (G. Khaliullin, WK and SM
PRL93, 176401(04)) - - Hall effect (WK, A. Oguri and SM
unpublished) - Thermopower and Nernst
effect (WK and SM PRL 87, 236603 (01). )
t2g orbital degeneracy in edge-shared CoO6 units
12- Kagomé in triangular lattice
CoO2 layer
O
Co
z
90 degrees
y
x
Co
Edge shared octahedra
OK to GO !
OK to GO !
2px
2px
-
-
-
-
-
-
d(xy)
d(xy)
NO GO !
OK to GO !
-
-
-
-
d(xy)
d(zx)
13Martin Indergand, Yasufumi Yamashita, Hiroaki
Kusunose, Manfred Sigrist,
( cond-mat/0502116)
14- Hopping of a 3d electron via O2p orbital
z
y
x
CoO2 layer
15(No Transcript)
16(No Transcript)
17I. Terasaki, Y. Sasago, and K. Uchinokura,
PRB56, 12685(97).
Y. Wang et al., cond-mat/0305455
18a high frequency residue RH
Shastry, Shraiman Singh, PRL70, 2004 (93)
Kumar Shastry, PRB68, 104508 (03).
19Jx
Jy
bH ? bt
These contributions are absent !!
20Difference of RH between square and triangular
lattices
charge carrier
21High temperature expansion
22a high frequency residue RH
Jx
Jy
bH ? bt
bH ? bt
Jx
Jy
bH ? bt
bH ? bt
bH ? bt
23..
..
24Kagomé lattice
RH (in units of v/de)
triangular lattice
kBT / t
WK, Oguri SM, unpublished.
t 25K
25Large Thermopower in NaCo2O4
I. Terasaki, Y. Sasago, and K. Uchinokura,
PRB56, 12685(97).
Spin and Orbital Degrees of Freedom in Co3(3d6
) and Co4(3d5 )
Small r
Basic unit
Co
Large Q
O
CoO6 octahedron
3d orbitals
eg
t2g
Orbital degree of freedom
W. Koshibae and S. Maekawa,PRL87, 236603 (01).
26electricity
Thermopower
Large Thermopower (Q) Small Resistivity (r) are
required.
heat
27(k thermal conductivity)
n-Bi2Te3 (n)
GeTe3-AgSbTe2 alloy (p)
PbTe (n)
ZT 1
NaCo2O4 (p)
n-SiGe n
n-FeSi2 (n)
B9CMg (p)
28 29Thermo-electric materials
Heat?Electricity
Heat of car
Garbage burning plant
Electricity?Heat
Refrigerator
Thermo-electric materials
No vibration (no moving part),Easy to
miniaturize, Gentle to environment.
30Thermopower at high temperatures
density matrix
particle current
energy flux operator
High temperature
independent of T
Entropy per carrier
chemical potential
entropy
SkBlng
g total number of the states
number of electrons
31At high temperatures
Spin and Orbital Degrees of Freedom based on the
Strong Coulomb Interaction
Key of Large Thermopower
Charge
Spin and Orbital
x 0.5
Co3
Co4
eg
Co3
Co4
ge
gh
t2g
1
6
ge
gh
Q 154 mV/K
32The degeneracy induced by Spin and Orbital
degrees of freedom
degeneracy of Co3 and Co4
Charge
Heikes Formula
- Other Transition Metal Oxides
ge / gh
-(kB/e)ln(ge/gh)
Ti3(3d1), Ti4(3d0)
6 / 1
-154 mV/K
V3(3d2), V4(3d1)
9 / 6
-35 mV/K
Cr3(3d3), Cr4(3d2)
4 / 9
70 mV/K
Mn3(3d4), Mn4(3d3)
10 / 4
-79 mV/K
Rh3(4d6), Rh4(4d5)
1 / 6
154 mV/K
Large thermopower is also expected!
33Experimental Group 1
Y. Ono
We have studied high-temperature thermoelectric
properties of CuCr1-xMgxO2 (x0-0.05) between
300 K and 1100 K.
CuCr1-xMgxO2 thin film prepared by pulsed laser
deposition technique was oriented to c-axis,
perpendicular to the sapphire substrate.
34Sr1-xRh2O4
Rh3 (4d6) and Rh4 (4d5)
Large Thermopower
Y. Okamoto, M. Nohara, F. Sakai and H. Takagi J.
Phys. Soc. Jpn. 75, 023704 (06).
35Thermopower (Q) at w ? ? (cf. B. Sriram Shastry,
PRB73, 085117(06).)
Electron dope U ? Hubbard model on the kagomé
lattice
NaCo2O4, x 0.5, t 100K
154 mV/K
Q
T K
36- Thermo-electric response tensor at w ? 0, (bt) ?
0
Nernst coefficient N ? -RH / T2 ? -1 / T
RH is positive and linear in T at high
temperature.
37In conclusionIt is of crucial importance to
see the electronic lattice hidden in the
frustrated crystal lattice.
38(No Transcript)