Graph Theory - PowerPoint PPT Presentation

1 / 84
About This Presentation
Title:

Graph Theory

Description:

Slides developed at the University of Florida for course COT3100, Applications of Discrete Structures, Spring 2001 & 2003. – PowerPoint PPT presentation

Number of Views:412
Avg rating:3.0/5.0
Slides: 85
Provided by: Mich171
Category:

less

Transcript and Presenter's Notes

Title: Graph Theory


1
Graph Theory
2
What are Graphs?
Not
  • ???????????????????????????????????????????
    ????????????????????????????????????
    ???????????(coordinate)
  • ?????????discrete mathematics???????????????????
    ??????????????????????????????????????????????????
    ???????????????????????????????????????
  • ???????????????????????????????????????????
    ????????????? ??????????????????? ???????????????
    ???

3
Simple Graphs
  • ????????????????????? R ????????????????????(symme
    tric), ?????????(irreflexive)
  • ?????????????(simple graph) G(V,E)??????????
  • ??? V ??????(vertices)
  • ??? E ???????(edges) ?????????????????????????
    u,v ? V, ?????? uRv

Visual Representationof a Simple Graph
4
Example of a Simple Graph
  • ??? V ????????????????????????????????
  • ????, VFL, GA, AL, MS, LA, SC, TN, NC
  • ??? Eu,vu ?????????????? v
  • FL,GA,FL,AL,FL,MS, FL,LA,GA,AL,AL,
    MS, MS,LA,GA,SC,GA,TN,
    SC,NC,NC,TN,MS,TN, MS,AL

NC
TN
SC
MS
AL
GA
LA
FL
5
Multigraphs
  • ????????????????????? ????????????????????????????
    ???????????????????
  • ????????????(multigraph) G(V, E, f )
    ??????????????????? V ,?????????? E
    ????????????fE?u,vu,v?V ? u?v
  • ???????? ???? ??????????? ????????????????????????
    ?????????

Paralleledges
6
Pseudographs
  • ???????????????????? ?????????????????????????????
    ??????? (R ????????????????????)
  • ?????????(pseudograph) G(V, E, f )
    ??????fE?u,vu,v?V ???? e?E ??????? ???
    f(e)u,uu
  • ???????? ???? ?????? ?????????????
  • ???????????????????????????????
  • ???????????????????????????

7
Directed Graphs
  • ???????????????????????? R ???????????????????????
    ????
  • ???????????????(directed graph) (V,E)
    ??????????????????? V ????????????????????? E
    ????? V
  • ???????? ???? V ?????????????,E(x,y) x
    ??? y

8
Directed Multigraphs
  • ???????????????????? ?????????????????????????????
    ???????????????????????????????????
  • ???????????????????????(directed multigraph)
    G(V, E, f ) ??????????????????? V ?????????? E
    ???????????? fE?V?V
  • ???????? ????., V???????,E???????????? WWW
    ?????????? ???????????????????????

9
Types of Graphs Summary
9
Department of Computer Science, Burapha University
10
Graph Terminology
  • ??? G ????????????????????????????????????????? E
    ??? e?E ?????? u,v ??????? ??????????????
  • u, v ?????????(adjacent) ?????????????????(neighbo
    rs) ????????????(connected)
  • ???? e ?????????????????(incident)
    ????????????????? u ?????? v
  • ???? e ??????(connects) u ??? v ??????
  • ??? u ?????? v ???????????(endpoints) ??????? e

10
Department of Computer Science, Burapha University
11
Example
Edge incidentwith b,d
e
g
a
b
d
f
AdjacentVertices
c
11
Department of Computer Science, Burapha University
12
Degree of a Vertex
  • ??? G ?????????????????????, ??? v?V
  • ?????(degree) ??? v ???????????? deg(v),
    ?????????????????????(incident)??????????
    (?????????????????????????????????)
  • ????????????????? 0 ???????? ??????(isolated)
  • ????????????????? 1 ???????? pendant

12
Department of Computer Science, Burapha University
13
Graph Terminology
  • Example ?????????????????????????????? ?????????
    pendant ????????????????????????
    ?????????????????????????????????

Solution ??? f ????????????? ?????? a, d ??? j
???? pendant ???????????????????????????? g ????
deg(g) 5 ???????????????????
?????????(pseudograph) (??????????? ???????????)
13
Department of Computer Science, Burapha University
14
Graph Terminology
  • ???????????????????????????? ?????????????????????
    ???????????????????????????????????????????????

Result ??????????? 9 ???? ????????????????????
18 ?????????????????? ????????????????????????????
??????? ??????????????????????????????????????????
????????
14
Department of Computer Science, Burapha University
15
Handshaking Theorem
  • ??? G ????????????????????? ????????????? V
    ????????????? E ???????
  • Corollary ?????????????????????
    ???????????????????????????????????????
  • ???????? ???? ???????????????? 10 ???
    ??????????????? 6 ???????????????????????????
  • ??? ????????????????????????????????? 6?10 60
    ??? Handshaking Theorem ???????? 2e 60 ???????
    ?????????????????? 30 ????

16
Directed Degree
  • ??? G ???????????????????, v ????????????? G
  • ?????????(in-degree) ??? v, deg?(v),
    ??????????????????????????? v
  • ????????(out-degree) ??? v, deg?(v),
    ?????????????????????????? v
  • ?????(degree) ??? v, deg(v)?deg?(v)deg?(v),
    ?????????????????????????????????? v
  • Directed Handshaking Theorem ??? G
    ????????????????????????????????????? V
    ????????????????? E ???????

17
Directed Degree
  • Example ?????????????????????????????? a, b, c,
    d ??????????????

deg-(b) 4 deg(b) 2
deg-(a) 1 deg(a) 2
deg-(d) 2 deg(d) 1
deg-(c) 0 deg(c) 2
18
Special Graph Structures
  • ????????????????????????????????
  • Complete graphs Kn
  • Cycles Cn
  • Wheels Wn
  • n-Cubes Qn
  • Bipartite graphs
  • Complete bipartite graphs Km,n

19
Complete Graphs
  • ????????????????? n?N, ???????????(complete
    graph) ????? n ???, Kn, ????????????????????? n
    ??? ?????????????????????????????????? ?u,v?V
    u?v?u,v?E

K1
K4
K3
K2
K5
K6
????????? Kn ?? ????
20
Cycles
  • ?????????????? n?3, ????(cycle)????? n ???, Cn,
    ???????????????????? Vv1,v2, ,vn ???
    Ev1,v2,v2,v3,,vn?1,vn,vn,v1

C3
C4
C5
C6
C8
C7
??????????????????????????? Cn?
21
Wheels
  • ?????????????? n?3, ?????(wheel) Wn,
    ????????????????????????????????? Cn
    ?????????????? vhub ?????????? n ???? vhub,v1,
    vhub,v2,,vhub,vn

W3
W4
W5
W6
W8
W7
??????????????????????????? Wn?
22
n-cubes (hypercubes)
  • ????????????????? n?N, ????????(hypercube) Qn
    ????????????????????????????????????????? Qn-1
    ?????????????????????????????? ??? Q0 ?? 1 ???

Q0
Q1
Q4
Q2
Q3
?????????????????? 2n ??????????????????????????
????
23
Bipartite Graphs
  • ????? ???? G(V,E) ???????????????(bipartite)
    ?????????? V V1 ? V2 ?????? V1nV2? ??? ?e?E
    ?v1?V1,v2?V2 ev1,v2
  • ?????????????????????????????????
  • ????????????????????????????????????????????????
  • ????????????????????????????????????????????????

V2
V1
24
Bipartite Graphs
  • Example I ???? C3 ???????????????(bipartite)?????
    ???

No, ?????????????????????????????
??????????????????????????????????????????????????
?????
Example II ???? C6 ???????????????(bipartite)????
????
Yes, ???????????????????? C6 ?????????????????????
????????
25
Complete Bipartite Graphs
  • ?????? m,n?N, ??????????????????(complete
    bipartite graph) Km,n ?????????????????? V1
    m, V2 n, ??? E v1,v2v1?V1 ? v2?V2
  • ????????? m ???????????????? ???
  • n ??????????????? ???
  • ???????????????????????????????
  • ???????????????????????

K4,3
Km,n ?? _____ ?????? _____ ????
26
Subgraphs
  • ????????(subgraph) ??????? G(V,E) ???????
    H(W,F) ?????? W?V ??? F?E

K5
??????????? K5
27
Graph Unions
  • ??????(union) G1?G2 ???????????????? G1(V1, E1)
    ??? G2(V2,E2) ???????????????? (V1?V2, E1?E2)

?
28
Graph Representations Isomorphism
  • ??????????(Graph representations)
  • Adjacency lists
  • Adjacency matrices
  • Incidence matrices
  • ?????????????????(Graph isomorphism)
  • ?????????????????????(isomorphic) ??????????
    ?????????????????????????????????????
    ???????????????????????????????

28
Department of Computer Science, Burapha University
29
Adjacency Lists
  • ?????????? 1 ?????????????? ??????????????????????
    ?????????????????

b
a
d
c
e
f
29
Department of Computer Science, Burapha University
30
Adjacency Lists
30
Department of Computer Science, Burapha University
31
Adjacency Matrices
  • ???????? Aaij, ?????? aij ???? 1 ??? vi, vj
    ??????????????? G, ??????? 0 ?????????????????????
    ????????
  • ?????????????????? ???????????????????????????????
    1 ???????????????????????????????????????? 1 ????
  • ????????? ??????????????(Adjacency matrices)
    ????????????????????? ????????????????????????

32
32
Department of Computer Science, Burapha University
33
33
Department of Computer Science, Burapha University
34
Incidence Matrices
  • ????? ??? G (V, E) ??????????????????????
    ?????? V n ????????????????????????? G ??????
    v1, v2, , vn ??? e1, e2, , em
  • ??????????????(incidence matrix) ??? G
    ???????????????????????????????
    ?????????????????????? 0-1 ???? n?m ???????? 1
    ?????????? (i, j) ????????? ej ????????? vi, ???
    0 ??????????????????????????
  • ??????????????? ?????????????? M mij,
  • mij 1 ????????? ej ???????????? vi mij
    0 ???????????? ej ???????????? vi

35
Incidence Matrices
e1 e2 e3 e4 e5 e6
a b c d e
e1
e6
e3
e5
e2
e4
36
Incidence Matrices
  • Example ????????????????????? M ??????? G
    ???????????????? a, b, c, d ??????? 1, 2, 3, 4,
    5, 6?

Solution
  • ????????? ???????????????????????????????????
    ?????????????????? 1?????? ???????????????????????
    ??????????????????????? ??????????????????????????
    ????????? 1 ?????????????

37
Graph Isomorphism
  • ?????
  • ????????????? G1(V1, E1) ??? G2(V2, E2)
    ??????????(isomorphic) ?????????? ? bijection f
    V1?V2 ?????? ?a,b?V1, a ??? b ???????????????
    G1 ?????????? f(a) ??? f(b) ??????????????? G2
  • f ???????????????????????????????????????????????
    ?? ????????????????????????????????

38
Graph Invariants under Isomorphism
  • ????????????????? G1(V1, E1) ?????????????????
    G2(V2, E2) ??????????????????????????????????????
    ??????(invariants), ??????????????????????????????
    ?????????????????? ??????????????????????
  • ?????? V1V2, ??? E1E2
  • ?????????????????? n ????????????????????????
  • ???????????? g ???????????? ??????????????????????
    ??????????????????????????????? g
  • ????????????????????????????????????????????????
    ???????????????????? ??????????????????????????
    ????????????????????????????????????????????????
    ???????????????????????

39
Graph Isomorphism-Example
  • ???????? ????????????
  • ??????????
  • ??????? ??????????????????????????

2
2
3
3
1
1
5
4
5
4
40
Graph Isomorphism-Example
  • ????????? ????? f (1) 1 ????????????????????????
    ???????????????????????

2
2
1
1
3
3
5
4
5
4
41
Graph Isomorphism -Example
  • ????????? ????? f (1) 1 ????????????????????????
    ??????????????????????? ??????????? 3, ?????????
    2 ??????????????? f (2) 3

2
2
3
1
1
3
5
4
5
4
42
Graph Isomorphism -Example
  • ????????? ????? f (1) 1 ????????????????????????
    ??????????????????????? ??????????? 3, ?????????
    2 ??????????????? f (2) 3 ??????????? 5
    ??????????????? f (3) 5

2
2
3
3
1
1
5
4
5
4
43
Graph Isomorphism-Example
  • ????????? ????? f (1) 1 ????????????????????????
    ??????????????????????? ??????????? 3, ?????????
    2 ??????????????? f (2) 3 ??????????? 5
    ??????????????? f (3) 5 ??????????? 2
    ??????????????? f (4) 2

2
2
3
3
1
1
5
4
4
5
44
Graph Isomorphism-Example
  • ????????? ????? f (1) 1 ????????????????????????
    ??????????????????????? ??????????? 3, ?????????
    2 ??????????????? f (2) 3 ??????????? 5
    ??????????????? f (3) 5 ??????????? 2
    ??????????????? f (4) 2 ??????????? 4
    ??????????????? f (5) 4

2
2
3
3
1
1
5
4
5
4
45
Graph Isomorphism-Example
  • ????????? ????? f (1) 1 ????????????????????????
    ??????????????????????? ??????????? 3, ?????????
    2 ??????????????? f (2) 3 ??????????? 5
    ??????????????? f (3) 5 ??????????? 2
    ??????????????? f (4) 2 ??????????? 4
    ??????????????? f (5) 4 ???????????????????????
    f (1) 1 ???????????????????????????????????
    ????????????????????????????????? f
    ????????????????????????????????????????????

2
2
1
1
3
3
5
4
5
4
?????????????????????
46
Isomorphism Example
  • ?????????????????????????????????????

?????? Yes, ?????????????????????
??????????????????????????????????????????????????
????????????????????? ??????? b ????????????????
a, c ?????????????????? ????????????????????????
??????? f ????????????????????????????????????????
f(a) e, f(b) a, f(c) b, f(d) c, f(e) d
47
Isomorphism Example
  • ???????????????????????????? ?????????????????????
    ?????????????????????? ???????????????????????????
    ?????????????

d
b
b
a
a
d
c
e
f
e
c
f
?????????????????????
48
Isomorphism Example
  • ?????????????????????????????????????

Solution No, ????????????????????????
?????????????????????????????????
?????????????????????????? d ????????????????
???????????????????????????????????????????????
49
Are These Isomorphic?
  • ???????????????????????????? ?????????????????????
    ?????????????????????? ???????????????????????????
    ?????????????
  • ????????????????????????????

a
b
  • ?????????????????????????????
  • ????????????????????????? 2 ??????????
    (?????????????? 1 ??? ????????????? 3 ???)

d
e
c
50
Connectivity
  • ????(path)???????????? n ?????? u ???????? v
    ????????????????????????????????? u ???????? v
  • ????????????????????????????????(circuit) ??? uv
  • ???????????????????????????????
    ?????????????(connected) ??????????
    ??????????????????????????????????????????????????
    ?
  • Yes
  • No
  • No

50
Department of Computer Science, Burapha University
51
Euler Hamilton Paths
  • ????????????(Euler circuit) ?????? G
    ???????????????????????????????????????????? G
  • ???????????????(Euler path) ?????? G
    ??????????(????)??????????????????????????????????
    ??? G
  • ????????????(Hamilton circuit) ???????????????????
    ????????????????? G ??????????????????????????
  • ???????????????(Hamilton path) ??????????(????)???
    ?????????????????????????? G ?????????????????????
    ?????

52
Euler circuit Euler path
  • ??????? ????????????(Euler path) ??????
    ??????????????????????????????????????????????????
  • ??????? ???????????? (Euler circuit) ?????? ???
    ??????????????????????????????????????????
  • ??????????????????????????????????? ????????????
    (Eulerian graph)
  • ???????? ???? G1 ??????????????( Euler path) a,
    c, d, e, b, d, a, b

a
b
c
d
e
52
Department of Computer Science, Burapha University
53
Example
  • abcdefgehia ???????? ??????????????????????
    ??????????????????????????????? bd, hd, hc ??? ci
  • ??????????????? G ???????????????? ?????????????
    G ?????????????????
  • abicbdchdefgehia

53
Department of Computer Science, Burapha University
54
Bridges of Königsberg Problem
  • ????????????????????????????????(A,B,C,D)
    ???????????????????????????????????????????
    ?????????????????????????????????????????

A
D
B
C
????????????
???????????????????????????
55
Euler Path Theorems
  • Theorem ????????????????????????(connected
    multigraph) ???????????????? ??????????
    ??????????????????????
  • Theorem ????????????????????????
    ??????????????????? (????????????????????)
    ????????????????????????? 2 ??????????????????????
    ??????
  • ??????????????????????, ??????????????????????????
    ?
  • ?????????????????????????????(Euler Circuit
    Algorithm)
  • ?????????????????
  • ???????????????????????????????
    ???????????????????????????????????????????
  • ??????????????????????????
  • ??????????????????????????????????????????????

56
Hamilton circuitHamilton path
  • ???????????? (Hamilton path) ???????
    ???????????????????????????????
    ??????????????????????????????????????
  • ???????????? (Hamilton circuit) ??????? ???
    ?????????????????????????????????
    ??????????????????????????????????????
  • ???????????? (Hamiltonian graph) ???
    ????????????????????????

56
Department of Computer Science, Burapha University
57
Hamiltonian Graph
????????????????????????????????????????????
58
Hamilton path
  • ??? G ?????????????????????????????????
  • ???? G ????????????????? abcde ???????????????????
    ????????????? G ????????????????? ??????????? de
    2 ????? ?????????????????????????????? G
    ????????????????? ??????? G ???????????????????

58
Department of Computer Science, Burapha University
59
Hamilton circuit
  • ??? G ????????????????????????????????? (?)
    ????????????????????????????????????????????????
    (?) ?????????????????????? ???????? G
    ????????????????

59
Department of Computer Science, Burapha University
60
Round-the-World Puzzle
  • ?????????????(traverse) ??????????????????????????
    ? 12 ??????????????????????????????????????????

?????????? 12 ????
?????????????????? 12 ????
61
Hamilton Paths
  • ???????????????????? ?????????????????????????????
    ??????? ??????????????????????????? ????
    ?????????????????????????? ???????????????????????
    ???????????????? ?????????????????????????????????
    ?(????)????????

62
Hamiltonian Path Theorems
  • Diracs theorem ??????? G ??????????????????????
    ???????(connected, simple)????????????? n?3 ???,
    ??????????v deg(v)?n/2, ???????? G ??????????????
  • Ores corollary ??????? G ???????????????????????
    ?????? ????????????? n3 ??? ??? deg(u)deg(v)n
    ????????????? ???u,v ???????????????????????? ,
    ???? ???? G ??????????????

62
Department of Computer Science, Burapha University
63
????????
  • ????????????? G ?????????????????????????
    ????????????????

?????? ????????????? G ??????????????????????? 5
?????????????????????????????? ??????????? 3 ????
3 5/2 ??????? G ?????????????????? ????????????
????? G ????????????????
64
Planar Graph
  • ??????? ??????????? G ??? ????????????? (planar
    graph) ????????????????????????????????? G
    ?????????????????????????????????????????????
  • ??????????????????????????????????????????????????
    ????????????????

64
Department of Computer Science, Burapha University
65
Example
  • ????????? 3 ???? ??? ???????????3 ????
    ???????????????????????????????????????????????
    ???????? ?????? 3 ???? ???????????????????????????
    ????????????? 3 ???? ?????? ??? ????? ???????????
    ???????????????????????????????? ????????
    ???????????????? ?????????????????????????????????
    ????????????? ????????????????????????????????????
    ????????????

65
Department of Computer Science, Burapha University
66
Degree of a face
  • ??????? ??? G ?????????????????
    ????????????????????????????? G ?????????
    ?????????????????????????????????????? ????
    (faces)
  • ???????????? (degree of a face) ???????????? d(f)
    ??????? ????????????????????????? ????
    ??????????????? ????????????????????????
    ??????????????????????????????????????????????????
    ?????????? (the infinite face)

66
Department of Computer Science, Burapha University
67
Example
  • ?????????????????? 3 ???? ??? f1 , f2 ??? f3
    ????? f3 ????????????????? d(f1) 3, d(f2)
    4, d(f3) 5 ???????? ?????????????????????????
    ????????? 12 ?????????????? 6 ????
  • ?????????????? ???????????????????????????????????
    ??????????????????????????? ??????????????????????
    ??????????????????????????????????
    ???????????????????????????????
    ????????????????????????????? ????????????????????
    ?????? G ?????????????? n ???? ??????? f1, f2, ,
    fn ?????????????? e ???? ????????

67
Department of Computer Science, Burapha University
68
Example
  • ????????????????? 10 ???? ??? f1, f2, f3,,f10
    ?????????????????? 22 ???? ???
  • ??????? ??? G ????????????????????????????????????
    ? ?????????? n ??? ????????? e ???? ????????????
    f ???????? n e f 2
  • ?????????????????? ??????? 14 22 10 2

68
Department of Computer Science, Burapha University
69
Weighted Graphs
  • ??????????????? ??? ?????????????????? e ???????
    G ?????????????????????????????????
  • w(e) ????????? ???????? w(e) ??? ??????? (weight)
    ??????? e ??? ??????????
  • ??????? G ???? w(G) ?????? w(G) ???
    ???????????????????????????????? G

860
2534
191
1855
722
908
957
760
606
834
349
2451
1090
595
69
Department of Computer Science, Burapha University
70
Shortest Path Problems
  • ???????????????????????????????????????????
    ?????? ?????????????????????????????????? (The
    traveling salemans problem) ?????????????????????
    ??????????????????????????????????????????????????
    ?? ?????????????????????????????????????
    ????????????????????????????????????????????????
  • ??????? ?????????????????????????????????????????
    ?????????????? ???????????????????????????????? 2
    ?????????????????????????????????????????
    ??????????????????????????????????????????????????
    ??????????? ?????????????????????????
    ????????????????????????????????? ???
    ?????????????????????????????????????????????????
    ???????????????????????????????????????
    ??????????????????????????????????????

70
Department of Computer Science, Burapha University
71
Shortest Path Problems
  • ??????????????????????????????????????????????????
    ????????? 2 ?????????????? ???????????????????????
    ???????????????????????????????????
    ??????????????????????????????????????
    ??????????????????????????????????
    ???????????????????????????????????????? ???
    ?????????? ???? ??????? (Dijkstra, Edsger Wybe)
  • Dijkstras algorithm ?????????????????????????????
    ?????????????????????? a ?????? z
    ?????????????????

71
Department of Computer Science, Burapha University
72
Dijkstras algorithm
  • procedure ??????? (G ????????????????????????????
    ???????????????? ?????????????????????????????)
  • G ????? a v0, v1, , vn z ?????????? w(vi,
    vj) 8 ??? vivj ????????????? G
  • begin
  • for i 1 to n do
  • L(vi) 8
  • L(a) 0
  • S Ø
  • ??????????????????? ????????? a ???? 0
    ????????????????? ???? 8 ??? SØ

72
Department of Computer Science, Burapha University
73
Dijkstras algorithm
  • while z ? S
  • begin
  • u ??????????????? S ??? L(u) ????????????
  • S S ? u
  • for v ? S
  • if L(u)w(u,v)ltL(v) then L(v)L(u)w(u,v)
  • ?????????? S ???????????????????? ???
    ????????????????????????????????? S
  • end L(z) ?????????????????????????? a ??????
    z
  • end

73
Department of Computer Science, Burapha University
74
Example
  • ??????????????????????????? a ???????? z
    ??????????????????

?????????????? a ???? 0 ??? ?????????????????? 8
??????? L0(a) 0 ?????? L0(b), L0(c), L0(d),
L0(e) ??? L0(z)???? 8 ??? S0 Ø
74
Department of Computer Science, Burapha University
75
Example
  • L1(b) min L0(b), L0(a) w(a, b) min 8, 0
    4 4
  • L1(c) min L0(c), L0(a) w(a, c) min 8, 0
    2 2
  • ?????? L1(d), L1(e) ??? L1(z) ???? 8
  • ??????? S2 a, c

???????? a ????????????????????????? ?????????????
S1 ??????? S1 a ??????????????? ??????????
?????????????? a ???????
75
Department of Computer Science, Burapha University
76
Example
  • L2(b) min L1(b), L1(c) w(c, b) min 4, 2
    1 3
  • L2(d) min L0(d), L1(c) w(c, d) min 8, 2
    8 10
  • L2(e) min L0(e), L1(c) w(c, e) min 8, 2
    10 12
  • ?????? L2(z) ???? 8
  • ??????? S3 a, c, b
  • ???????????????????????????????????? c

76
Department of Computer Science, Burapha University
77
Example
  • L3(d) min L2(d), L2(b) w(b, d) min 10, 3
    5 8
  • ?????? L3(z) ???? 8
  • ??????? S4 a, c, b, d
  • ???????????????????????????????????? b

77
Department of Computer Science, Burapha University
78
Example
  • L4(e) min L2(e), L3(d) w(d, e) min 12, 8
    2 10
  • L4(z) min L0(z), L3(d) w(d, z) min 8, 8
    6 14
  • ??????? S4 a, c, b, d, e

78
Department of Computer Science, Burapha University
79
Example
  • L5(z) min L4(z), L4(e) w(e, z) min 14,
    10 3 13
  • ??????? S5 a, c, b, d, e, z
  • ?????????????????????????????? a ???????? z ???
    acbdez
  • ??????????????????? 13 ?????

79
Department of Computer Science, Burapha University
80
Graph Coloring
  • ????????????(graph coloring) ????????????????????
    ??????? ??????????????????????????????????????????
    ????????????????? ?????????????
  • Chromatic number ?????????????????????????????????
    ?????????????????????
  • ???? C5 ??????? Chromatic number ???? 3
  • ???? C4 ,C6 ??????? Chromatic number ???? 2
  • ???? ???? Cycle Cn ??????? Chromatic number ????
    3 ????? n ???????????? ?????????? Chromatic
    number ???? 2 ????? n ????????????

C6
C5
C4
80
Department of Computer Science, Burapha University
81
Example
  • ????????????????????? Kn ???????????????????? n
    ?? ???????????????????????? K m, n ?????
    Chromatic number??? 2

81
Department of Computer Science, Burapha University
82
The 4-color theorem
  • Chromatic number ?????????(planar graph) 4
  • The Four color theorem chromatic number
    ????????????????????????????????? 4
  • Example ???? G1 ?? chromatic number 3, ???? G2
    ?? chromatic number 4

G1
G2
82
Department of Computer Science, Burapha University
83
Application of Graph Coloring
  • ????????????????????????????
  • ??????????????????????????????????????????????????
    ??????????????????????
  • ???????????? ?????????????????????????????????????
    ???????????????????????? 2 ???????????????????????
    ???
  • ???????????????????????????????????????????????

83
Department of Computer Science, Burapha University
84
Example
  • ???????????????????????????????????????????????
    ???????????????????????????????????? 7 ????
    (????????????????? 1, 2,,7) ?????????????????????
    ???????????????????????? ?????????????????????????
    ??????????????????????????????????
  • 1-2, 1-3, 1-4, 1-7
  • 2-3,2-4,2-5,2-7
  • 3-4,3-6,3-7
  • 4-5,4-6
  • 5-6,5-7
  • 6-7

84
Department of Computer Science, Burapha University
Write a Comment
User Comments (0)
About PowerShow.com