Background Review - PowerPoint PPT Presentation

About This Presentation
Title:

Background Review

Description:

Elementary functions Complex numbers Common test input signals Differential equations Laplace transform Examples properties Inverse transform Partial fraction expantion – PowerPoint PPT presentation

Number of Views:109
Avg rating:3.0/5.0
Slides: 45
Provided by: Bri139
Category:

less

Transcript and Presenter's Notes

Title: Background Review


1
Background Review
  • Elementary functions
  • Complex numbers
  • Common test input signals
  • Differential equations
  • Laplace transform
  • Examples
  • properties
  • Inverse transform
  • Partial fraction expantion
  • Matlab

2
Elementary functions
3
The most beautiful equation
  • It contains the 5 most important numbers 0, 1,
    i, p, e.
  • It contains the 3 most important operations ,
    , and exponential.
  • It contains equal sign for equations

4
Elementary functions
5
Elementary functions
6
Elementary functions
7
Elementary functions
8
Elementary functions
  • F(t)3sin 3t 4cos 3t
  • F(t)Asin(3t-d)Acosd sin3t Asin d cos3t
  • Acos d 3
  • Asin d -4
  • A225, A5
  • tan d -4/3, d-53.13o
  • F(t)5sin(3t53.13o)

9
Complex Numbers
  • X210 ? xi where i2-1
  • X240, then x2i, or 2j
  • If z1x1iy1, z2x2iy2
  • Then z1 z2 (x1 x2)i(y1 y2)
  • z1 z2(x1iy1)(x2iy2)(x1x2 -y1y2) i(x1y2
    x2y1)

10
Polar form of Complex Numbers
  • zxiy, lets put xrcosq, y rsinq
  • Then z r(cosqi sinq) r cisq r?q
  • Absolute value (modulus) r2x2y2
  • Argument q tan-1(y/x)
  • Example z1i

11
Euler Formula
  • zxiy
  • ez exiy ex eiy ex (cos yi sin y)
  • eix cos xi sin x cis x
  • eix sqrt(cos2 x sin2 x) 1
  • zr(cosqi sinq)r eiq
  • Find e1i
  • Find e-3i

12
In Matlab
  • gtgt z112i
  • z1 1.0000 2.0000i
  • gtgt z23i5
  • z2 3.0000 5.0000i
  • gtgt z3z1z2
  • z3 4.0000 7.0000i
  • gtgt z4z1z2
  • z4 -7.0000 11.0000i
  • gtgt z5z1/z2
  • z5 0.3824 0.0294i
  • gtgt r1abs(z1)
  • r1 2.2361
  • gtgt theta1angle(z1)
  • theta1 1.1071
  • gtgt theta1angle(z1)180/pi
  • theta1 63.4349
  • gtgt real(z1)
  • ans 1
  • gtgt imag(z1)
  • ans 2

13
Poles and zeros
  • Pole of G(s) is a value of s near which the value
    of G goes to infinity
  • Zero of G(s) is a value of s near which the value
    of G goes to zero.

14
Poles and zeros in Matlab
  • gtgt stf(s)
  • Transfer function s
  • gtgt Gexp(-2s)/s/(s1)
  • Transfer function
  • 1
  • exp(-2s) -----------
  • s2 s
  • gtgt pole(G)
  • ans 0, -1
  • gtgt zero(G)
  • ans Empty matrix 0-by-1

15
Test waveforms used in control systems
16
1st order differential equations
  • y a y 0 y(0)C, and zero input
  • Solution y(t) Ce-at
  • y a y d(t) y(0)0, input unit impulse
  • Unit impulse response h(t) e-at
  • y a y f(t) y(0)C, non zero input
  • Total response y(t) zero input response zero
    state response Ce-at h(t) f(t)
  • Higher order LODE use Laplace

17
Laplace Transform
  • Definition and examples

Unit Step Function u(t)
18
Laplace Transform
19
Name____________
The single most important thing to remember is
that whenever there is feedback, one should worry
about __________
20
Laplace Transform
21
Laplace Transform
22
Laplace Transform
23
Laplace Transform
24
Laplace transform table
25
Laplace transform theorems
26
Laplace Transform
27
Laplace Transform
28
Laplace Transform
29
Laplace Transform
  • y9y0, y(0)0, y(0)2
  • L(y)s2Y(s)-sy(0)-y(0) s2Y(s)-2
  • L(y)Y(s)
  • (s29)Y(s)2
  • Y(s)2/ (s29)
  • y(t)(2/3) sin 3t

30
Matlab
F2/(s29) F 2/(s29) gtgt filaplace(F) f
2/99(1/2)sin(9(1/2)t) gtgt simplify(f)
ans 2/3sin(3t)
31
Laplace Transform
  • y2y5y0, y(0)2, y(0)-4
  • L(y)s2Y(s)-sy(0)-y(0) s2Y(s)-2s4
  • L(y)sY(s)-y(0)sY(s)-2
  • L(y)Y(s)
  • (s22s5)Y(s)2s
  • Y(s)2s/ (s22s5)2(s1)/(s1)222-2/(s1)222
  • y(t) e-t(2cos 2t sin 2t)

32
Matlab
gtgt F2s/(s22s5) F 2s/(s22s5) gtgt
filaplace(F) f 2exp(-t)cos(2t)-exp(-t)sin
(2t)
33
Laplace transform
  • Y-2 y-3 y0, y(0) 1, y(0) 7
  • Y2 y-8 y0, y(0) 1, y(0) 8
  • Y2 y-3 y0, y(0) 0, y(0) 4
  • 4Y4 y-3 y0, y(0) 8, y(0) 0
  • Y2 y y0, y(0) 1, y(0) -2
  • Y4 y0, y(0) 1, y(0) 1

34
Y2 y y0, y(0) 1, y(0) -2 gtgt A0 1-1
-2 B01 C1 0 D0 gtgt x01-2 gtgt
tsym('t') gtgt yCexpm(At)x0 y
exp(-t)-texp(-t) Y2 y yf(t)u(t), y(0) 2,
y(0) 3
35
Partial Fraction
36
Partial Fraction
37
Partial fraction repeated factor
38
Partial fraction repeated factor
But No FUN
39
Partial fraction exercise
40
Matlab
gtgt r p kresidue(n,d) r 1 2 p
1 0 k
gtgt d1 -1 0 d 1 -1 0 gtgt n3
-2 n 3 -2
1/(s-1) 2/s
41
Matlab
gtgt r p kresidue(n,d) r 1.5000
-1.5000 1.0000 p 3 -3 0 k

gtgt n1 9 -9 n 1 9 -9 gtgt d1 0 -9
0 d 1 0 -9 0
1.5/(s-3)-1.5/(s3)1/s
42
Matlab
gtgt r p kresidue(n,d) r 2.0000
-3.0000 1.0000 p 2.0000 -2.0000
1.0000 k
gtgt n11 -14 n 11 -14 gtgt d1 -1 -4 4 d
1 -1 -4 4
2/(s-2)-3/(s2)1/(s-1)
43
Matlab
gtgt r p kresidue(a,b) r 1 -1 p
-1 -1 k
gtgt b1 2 1 b 1 2 1 gtgt a1 0 a
1 0
1/(s1)-1/(s1)2
44
gtgt Y(s4-7s313s24s-12)/s2/(s-3)/(s2-3s
2) Transfer function s4 - 7 s3 13 s2 4 s
- 12 ------------------------------------ s5
- 6 s4 11 s3 - 6 s2 gtgt n,dtfdata(Y,'v') n
0 1 -7 13 4 -12 d 1
-6 11 -6 0 0 gtgt r,p,kresidue(n,d
) r 0.5000 -2.0000 -0.5000
3.0000 2.0000 p 3.0000 2.0000
1.0000 0 0 k
Write a Comment
User Comments (0)
About PowerShow.com