Title: Stanford CS223B Computer Vision, Winter 2006 Lecture 5 Stereo I
1Stanford CS223B Computer Vision, Winter
2006Lecture 5 Stereo I
Stereo
Stereo
- Professor Sebastian Thrun
- CAs Dan Maynes-Aminzade, Mitul Saha, Greg
Corrado
2Homework 1
3Vocabulary Quiz
- Baseline
- Epipole
- Fundamental Matrix
- Essential Matrix
- Stereo Rectification
4Stereo Vision Illustration
http//www.well.com/user/jimg/stereo/stereo_list.h
tml
5Stereo Example (Stanley Robot)
Disparity map
6Stereo Example
7Stereo Vision Outline
- Basic Equations
- Epipolar Geometry
- Image Rectification
- Reconstruction
- Correspondence
- Dense and Layered Stereo
- (Active Range Imaging Techniques)
8The Two Problems of Stereo
- Correspondence (Wed)
- Reconstruction (Today)
9Pinhole Camera Model
Image plane
Focal length f
Center of projection
10Pinhole Camera Model
Image plane
11Pinhole Camera Model
Image plane
12Basic Stereo Derivations
13Basic Stereo Derivations
14What If?
15Epipolar Geometry
P
Pl
Pr
Yr
p
p
r
l
Yl
Zl
Zr
Xl
fl
fr
Ol
Or
Xr
16Epipolar Geometry
P
Pl
Pr
Epipolar Plane
Epipolar Lines
p
p
l
r
Ol
el
er
Or
Epipoles
17Epipolar Geometry
- Epipolar plane plane going through point P and
the centers of projection (COPs) of the two
cameras - Epipoles The image in one camera of the COP of
the other - Epipolar Constraint Corresponding points must
lie on epipolar lines
18Essential Matrix
P
Pl
Pr
p
p
r
l
Ol
el
er
Or
19Essential Matrix
P
Pl
Pr
p
p
r
l
Ol
el
er
Or
20Fundamental Matrix
- Same as Essential Matrix in Camera Pixel
Coordinates
Pixel coordinates
Intrinsic parameters
21Intrinsic Parameters (See Chapter 2)
22Computing F The Eight-Point Algorithm
- Problem Recover F (3-3 matrix of rank 2)
- Ides Get 8 points
- Minimize
- Notice Argument linear in coefficients of F
23Computing F The Eight-Point Algorithm
- Run Singular Value Decomposition of A
- Appendix A.6, page 322-325
- See also G. Strang Linear algebra and its
applications - Least squares solution column of V corresponding
to the smallest eigenvalue of A
24Computing F The Eight-Point Algorithm
- Idea Compile points into matrix A
25Computing F The Eight-Point Algorithm
- Decompose A via SVD
- Solution F is column of V corresponding to the
smallest eigenvector of A - In practice F will be of rank 3, not 2. Correct
by - SVD decomposition of F
- Set smallest eigenvalue to 0
- Reconstruct F
26Computing F The Eight-Point Algorithm
- Input n point correspondences ( n gt 8)
- Construct homogeneous system Ax 0 from
- x (f11,f12, ,f13, f21,f22,f23 f31,f32, f33)
entries in F - Each correspondence give one equation
- A is a nx9 matrix
- Obtain estimate F by SVD of A
- x (up to a scale) is column of V corresponding to
the least singular value - Enforce singularity constraint since Rank (F)
2 - Compute SVD of F
- Set the smallest singular value to 0 D -gt D
- Correct estimate of F
- Output the estimate of the fundamental matrix
F - Similarly we can compute E given intrinsic
parameters
27Recitification
- Idea Align Epipolar Lines with Scan Lines.
- Question What type transformation?
28Locating the Epipoles
P
Pl
Pr
p
p
r
l
Ol
el
er
Or
29Stereo Rectification (see Trucco)
P
Pl
Pr
Yr
p
p
l
r
Yl
Xl
Zl
Zr
T
Ol
Or
Xr
- Stereo System with Parallel Optical Axes
- Epipoles are at infinity
- Horizontal epipolar lines
30Reconstruction (3-D) Idealized
Pl
Pr
P
p
p
r
l
Ol
Or
31Reconstruction (3-D) Real
Pl
Pr
P
p
p
r
l
Ol
Or
See Trucco/Verri, pages 161-171
32Summary Stereo Vision (Class 1)
- Epipolar Geometry Corresponding points lie on
epipolar line - Essential/Fundamental matrix Defines this line
- Eight-Point Algorithm Recovers Fundamental
matrix - Rectification Epipolar lines parallel to
scanlines - Reconstruction Minimize quadratic distance