Stanford CS223B Computer Vision, Winter 2006 Lecture 5 Stereo I PowerPoint PPT Presentation

presentation player overlay
About This Presentation
Transcript and Presenter's Notes

Title: Stanford CS223B Computer Vision, Winter 2006 Lecture 5 Stereo I


1
Stanford CS223B Computer Vision, Winter
2006Lecture 5 Stereo I
Stereo
Stereo
  • Professor Sebastian Thrun
  • CAs Dan Maynes-Aminzade, Mitul Saha, Greg
    Corrado

2
Homework 1
3
Vocabulary Quiz
  • Baseline
  • Epipole
  • Fundamental Matrix
  • Essential Matrix
  • Stereo Rectification

4
Stereo Vision Illustration
http//www.well.com/user/jimg/stereo/stereo_list.h
tml
5
Stereo Example (Stanley Robot)
Disparity map
6
Stereo Example
7
Stereo Vision Outline
  • Basic Equations
  • Epipolar Geometry
  • Image Rectification
  • Reconstruction
  • Correspondence
  • Dense and Layered Stereo
  • (Active Range Imaging Techniques)

8
The Two Problems of Stereo
  • Correspondence (Wed)
  • Reconstruction (Today)

9
Pinhole Camera Model
Image plane
Focal length f
Center of projection
10
Pinhole Camera Model
Image plane
11
Pinhole Camera Model
Image plane
12
Basic Stereo Derivations
13
Basic Stereo Derivations
14
What If?
15
Epipolar Geometry
P
Pl
Pr
Yr
p
p
r
l
Yl
Zl
Zr
Xl
fl
fr
Ol
Or
Xr
16
Epipolar Geometry
P
Pl
Pr
Epipolar Plane
Epipolar Lines
p
p
l
r
Ol
el
er
Or
Epipoles
17
Epipolar Geometry
  • Epipolar plane plane going through point P and
    the centers of projection (COPs) of the two
    cameras
  • Epipoles The image in one camera of the COP of
    the other
  • Epipolar Constraint Corresponding points must
    lie on epipolar lines

18
Essential Matrix
P
Pl
Pr
p
p
r
l
Ol
el
er
Or
19
Essential Matrix
P
Pl
Pr
p
p
r
l
Ol
el
er
Or
20
Fundamental Matrix
  • Same as Essential Matrix in Camera Pixel
    Coordinates

Pixel coordinates
Intrinsic parameters
21
Intrinsic Parameters (See Chapter 2)
22
Computing F The Eight-Point Algorithm
  • Problem Recover F (3-3 matrix of rank 2)
  • Ides Get 8 points
  • Minimize
  • Notice Argument linear in coefficients of F

23
Computing F The Eight-Point Algorithm
  • Run Singular Value Decomposition of A
  • Appendix A.6, page 322-325
  • See also G. Strang Linear algebra and its
    applications
  • Least squares solution column of V corresponding
    to the smallest eigenvalue of A

24
Computing F The Eight-Point Algorithm
  • Idea Compile points into matrix A

25
Computing F The Eight-Point Algorithm
  • Decompose A via SVD
  • Solution F is column of V corresponding to the
    smallest eigenvector of A
  • In practice F will be of rank 3, not 2. Correct
    by
  • SVD decomposition of F
  • Set smallest eigenvalue to 0
  • Reconstruct F

26
Computing F The Eight-Point Algorithm
  • Input n point correspondences ( n gt 8)
  • Construct homogeneous system Ax 0 from
  • x (f11,f12, ,f13, f21,f22,f23 f31,f32, f33)
    entries in F
  • Each correspondence give one equation
  • A is a nx9 matrix
  • Obtain estimate F by SVD of A
  • x (up to a scale) is column of V corresponding to
    the least singular value
  • Enforce singularity constraint since Rank (F)
    2
  • Compute SVD of F
  • Set the smallest singular value to 0 D -gt D
  • Correct estimate of F
  • Output the estimate of the fundamental matrix
    F
  • Similarly we can compute E given intrinsic
    parameters

27
Recitification
  • Idea Align Epipolar Lines with Scan Lines.
  • Question What type transformation?

28
Locating the Epipoles
P
Pl
Pr
p
p
r
l
Ol
el
er
Or
29
Stereo Rectification (see Trucco)
P
Pl
Pr
Yr
p
p
l
r
Yl
Xl
Zl
Zr
T
Ol
Or
Xr
  • Stereo System with Parallel Optical Axes
  • Epipoles are at infinity
  • Horizontal epipolar lines

30
Reconstruction (3-D) Idealized
Pl
Pr
P
p
p
r
l
Ol
Or
31
Reconstruction (3-D) Real
Pl
Pr
P
p
p
r
l
Ol
Or
See Trucco/Verri, pages 161-171
32
Summary Stereo Vision (Class 1)
  • Epipolar Geometry Corresponding points lie on
    epipolar line
  • Essential/Fundamental matrix Defines this line
  • Eight-Point Algorithm Recovers Fundamental
    matrix
  • Rectification Epipolar lines parallel to
    scanlines
  • Reconstruction Minimize quadratic distance
Write a Comment
User Comments (0)
About PowerShow.com