Title: Applications of Cellular Neural/Nonlinear Networks in Physics
1Applications of Cellular Neural/Nonlinear
Networks in Physics
Babes-Bolyai University Péter Pázmány Catholic
University
- Mária-Magdolna Ercsey-Ravasz
Scientific advisors Dr. Prof. Zoltán Néda Dr.
Prof. Tamás Roska
2Outline
- CNN computing
- A realistic random number generator
- Stochastic simulations on CNN computers
- The site-percolation problem
- The two-dimensional Ising model
- Optimization of spin-glasses on a space-variant
CNN - Pulse-coupled oscillators communicating with
light pulses
3The standard CNN model
- Each cell has a circuit with
- Input voltage u
- State voltage x
- Output voltage y
Template
A , B , z
L. O. Chua , L. Yang, IEEE Transactions on
Circuits and Systems 35. No. 10, 1988
,
.
4The CNN Universal Machine
ACE16K CNN chip 128128 cells Bi-i V2
- programmable
- parallel processing
- continuous in time
- continuous (analog) in values
- discrete in space
- Universal (in Turing sense) on integers and
on analog array signals
T. Roska, L. O. Chua, IEEE Transactions on
Circuits and Systems II, 40, 1993
5CNN computing
Name Year Size
-- 1993 1212
ACE440 1995 2022
POS48 1997 4848
ACE4k 1998 6464
CACE1k 2001 32322
ACE16k 2002 128128
XENON 2004 128962
EYE-RIS 2007 176144
- image processing
- real-time algorithms
- fast and smart camera computer
- robot eyes, bionic eye-glass
- partial differential equations
- Research goals
- applications in physics
- how should CNN computers be further developed?
from physicist perspectives
6Generating realistic random numbers
- A good pseudo-random generator
Yalcin, et alle., Int.J. Circ. Theor. Appl., 32,
591-607, 2004
- Chaotic cellular automaton perturbed
- with the natural noise of the chip
- P(t)P(t) xor N(t)
- N(t) - very few black pixels
- - strong correlations but
- real stochastic fluctuations
-
P(t) P1(t) XOR P2(t)
7- a good random binary image in t116 µs
- 1 single random value
- ACE16K ?
7ns - Pentium 4 at 2.8 GHz (Linux) ? 33ns
Increasing the size of the chip in the future
will assure even much bigger advantage for CNN
chips
Trend for the simulation time as a function of
the chip size
M. Ercsey-Ravasz, T. Roska, Z. Neda, Int. J. of
Modern Physics C, Vol. 17, No. 6, p. 909 (2006)
8- generating random images with different p
density of the black pixels --- using more
images with ½ density - --- if p is an n bit
number we need n images
p0.25 p0.375 p0.03125
P Measured density
1/2 0.5 0.4999529
1/40.25 0.254261
1/80.125 0.124140
1/160.0625 0.061423
1/320.03125 0.031561
1/640.015625 0.015257
1/1280.0078125 0.007470
1/2560.00390625 0.004154
1/4 1/80.375 0.377712
- Correlations
- in space (first neighbors) 0.05 - 0.4
- in time (consecutive steps) 0.7 - 0.8
M. Ercsey-Ravasz, T. Roska, Z. Neda, Int. J. of
Modern Physics C, Vol. 17, No. 6, p. 909 (2006)
9Stochastic simulations on CNN computers
The site percolation problem
- Used for modeling
- conductivity or mechanical properties of
composite materials - magnetization of dilute magnets at low
temperatures - fluid passing through porous materials
- propagation of diseases
- Probability of percolation - density of black
pixels - 2nd order geometrical phase-transition
- With CNN 1 single template detecting
percolation - input the random image
- initial state the first row
- output the parts connected to the first row
-
ACE16k chip
10- Percolation probability
- - for each p 10000 different initial conditions
- - results agree with the accepted critical value
- pc0.407
Trend for the simulation time in function of the
chip size
- Time needed
- CNN t L
- digital computers t L
- For L128 CNN is slower
- if L grows still promises advantage
2
M. Ercsey-Ravasz, T. Roska, Z. Neda, Int. J. of
Modern Physics C, Vol. 17, No. 6, p. 909 (2006)
11The two-dimensional Ising model
Energy of the system
Metropolis algorithm - randomly choose a spin
and flip it with p probability
- On CNN A parallel Metropolis algorithm is
used - Because parallel computing we have to avoid
flipping 2 neighbors simultaneously
chessboard mask - Odd (even) step spins marked with black
(white) are updated - Equivalent with a Metropolis algorithm in which
spins are chosen in a well
defined order
12- Algorithm scheme for 1 MC step
- Build 3 masks marking
-generate 2 random images - Spins with 4 similar neighbors (?E8J) M1
----AND------ P1 with exp(-8J/kT) - Spins with 3 similar neighbors (?E4J) M2
----AND------ P2 with exp(-4J/kT) - Other spins (?E?0) M3
- Build the composed mask M(M1 AND P1) OR (M2 AND
P2) OR M3 - Use the (inverse) chessboard mask M M AND C in
(even) odd steps - Flip the spins marked on M
T2 T2.3 T2.6 (
J/k1)
Movies obtained with the ACE16K chip
M. Ercsey-Ravasz, T. Roska, Z. Neda, Eur. Phys.
J. B, Vol. 51, No. 3, p. 407, (2006)
13Specific heat
Results for the Ising model
Magnetization
Susceptibility
- Initial state homogeneous
- Boundary conditions fixed
- 5000 transition MC steps
- Averaging over 10000 MC steps
M. Ercsey-Ravasz, T. Roska, Z. Neda, Eur. Phys.
J. B, Vol. 51, No. 3, p. 407, (2006)
14Time needed for 1 MC step (128128 lattice)
? 4.3 ms on the ACE16K chip ? 2.2 ms on a
Pentium 4 at 2.4 GHz
M. Ercsey-Ravasz, T. Roska, Z. Neda, Eur. Phys.
J. B, Vol. 51, No. 3, p. 407, (2006)
15Optimization of spin-glasses on a space-variant
CNN
only simulated
- final state after an operation yij ?1
- Lyapunov function (energy) of the CNN
CNN
Spin-glass
- monotone decreasing
- final state local minimum (dE/dt0)
y?-1,1
y1
same local minima 1 operation ? 1 local minimum
16The stochastic optimization algorithm
- Same principles as in simulated annealing
- noise random input U
- b ? strength of noise
- b slowly decreases
- we choose
- b05
- ?b0.05
1 cooling process
17NP-hard problem hard for plt0.6
- Speed estimation
- the A templates must be introduced only once for
each problem - we can use the characteristic parameters of the
ACE16k chip
1000- 5000 steps / second Independent of size !
Many applications error-correcting codes,
econophysics, computer science etc.
M. Ercsey-Ravasz, T. Roska, Z. Neda, Physica D
Nonlinear Phenomena, Special issue Novel
computing paradigms Quo vadis?, accepted,
(2008), http//dx.doi.org/10.1016/j.physd.2008.03
.028
18Pulse-coupled oscillators communicating with
light pulses
Motivations - studying a CNN with pulse-coupled
oscillators -
communicating with light global coupling
- perspectives separately programmable
oscillators - first part of the study
collective behavior of identical units
- The oscillators
- electronic fireflies
- simple integrate-and-fire type neurons
- Photoresistor (R,U) LED
- light R U
- G threshold
- if UgtG LED fires
- not before Tmin
- not after Tmax
19Collective behavior
Tmin? 800 ms Tmax ? 2700 ms Firing ? 200
ms Reaction time of the photoresistor ? 40
ms Deviations 2-10
20Order parameter - normalized phase-histogram
smoothing
21Perspectives
- Separately programmable oscillators
- Tmin, Tmax, Tflash, light intensity A, threshold G
CNN model using pulse-coupled oscillators
Benefits - global coupling - dynamical
inputs - time-delays No independent A(i,jk,l)
- pattern recognition, detecting spatio-temporal
events - studying the role of reaction time ?
- dynamically changing the parameters
22Conclusion
- Realistic random numbers
- Stochastic simulations on lattice models
- The site-percolation problem
- The two-dimensional ising model
- - many related problems could be also simulated
- Locally variant CNN very fast stochastic
optimization algorithm for spin-glass models - Further motivating the development of CNN-UM
hardwares - CNN built up by pulse-coupled oscillators
- Ineteresting collective behavior further
studies - Communication with light could be useful idea
also in hardware projects
23Journal publications
- M. Ercsey-Ravasz, T. Roska, Z. Néda,
Perspectives for Monte Carlo simulations on the
CNN universal machine, Int. J. of Modern Physics
C, Vol. 17, No. 6, pp. 909-923, 2006 - M. Ercsey-Ravasz, T. Roska, Z. Néda, Stochastic
simulations on the cellular wave computers, Eur.
Phys. J. B, Vol. 51, No. 3, pp. 407-412, 2006 - M. Ercsey-Ravasz, T. Roska, Z. Néda,
Statistical physics on cellular neural network
computers, Physica D Nonlinear Phenomena, vol.
Special issue Novel computing paradigms Quo
Vadis?, 2008, accepted, http//dx.doi.org/10.1016
/j.physd.2008.03.28
24International conferences
- M. Ercsey-Ravasz, T. Roska, and Z. Neda, Random
number generator and monte carlo type simulations
on the cnn-um, in Proceedings of the 10th IEEE
International Workshop on Cellular Neural
Networks and their applications, (Istanbul,
Turkey), pp. 4752, Aug. 2006. - M. Ercsey-Ravasz, Z. Sarkozi, Z. Neda, A.
Tunyagi, and I. Burda, Collective behavior of
electronic fireflies, SynCoNet 2007
International Symposium on Synchronization in
Complex Networks, July 2007. - M. Ercsey-Ravasz, T. Roska, and Z. Neda,
Statistical physics on cellular neural network
computers. International conference
Unconventional computing Quo vadis?, Mar.
2007. - M. Ercsey-Ravasz, T. Roska, and Z. Neda,
Spin-glasses on a locally variant cellular
neural network. International Conference on
Complex Systems and Networks, July 2007. - M. Ercsey-Ravasz, T. Roska, and Z. Neda,
Applications of cellular neural networks in
physics. RHIC Winterschool, Nov. 2005. - M. Ercsey-Ravasz, T. Roska, and Z. Neda, The
cellular neural network universal machine in
physics. International Conference on
Computational Methods in Physics, Nov. 2006. - M. Ercsey-Ravasz, T. Roska, and Z. Neda,
NP-hard optimization using locally variant CNN,
accepted in the Proceedings of the CNNA2008.
25Thank You!