Applications of Cellular Neural/Nonlinear Networks in Physics - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Applications of Cellular Neural/Nonlinear Networks in Physics

Description:

... bionic eye-glass cellular automata models partial differential equations Research goals: applications in physics how should CNN computers be further developed? ... – PowerPoint PPT presentation

Number of Views:147
Avg rating:3.0/5.0
Slides: 26
Provided by: PCla5
Category:

less

Transcript and Presenter's Notes

Title: Applications of Cellular Neural/Nonlinear Networks in Physics


1
Applications of Cellular Neural/Nonlinear
Networks in Physics
Babes-Bolyai University Péter Pázmány Catholic
University
  • Mária-Magdolna Ercsey-Ravasz

Scientific advisors Dr. Prof. Zoltán Néda Dr.
Prof. Tamás Roska
2
Outline
  • CNN computing
  • A realistic random number generator
  • Stochastic simulations on CNN computers
  • The site-percolation problem
  • The two-dimensional Ising model
  • Optimization of spin-glasses on a space-variant
    CNN
  • Pulse-coupled oscillators communicating with
    light pulses

3
The standard CNN model
  • Each cell has a circuit with
  • Input voltage u
  • State voltage x
  • Output voltage y

Template
A , B , z
L. O. Chua , L. Yang, IEEE Transactions on
Circuits and Systems 35. No. 10, 1988
,
.
4
The CNN Universal Machine
ACE16K CNN chip 128128 cells Bi-i V2
  • programmable
  • parallel processing
  • continuous in time
  • continuous (analog) in values
  • discrete in space
  • Universal (in Turing sense) on integers and
    on analog array signals

T. Roska, L. O. Chua, IEEE Transactions on
Circuits and Systems II, 40, 1993
5
CNN computing
Name Year Size
-- 1993 1212
ACE440 1995 2022
POS48 1997 4848
ACE4k 1998 6464
CACE1k 2001 32322
ACE16k 2002 128128
XENON 2004 128962
EYE-RIS 2007 176144
  • image processing
  • real-time algorithms
  • fast and smart camera computer
  • robot eyes, bionic eye-glass
  • cellular automata models
  • partial differential equations
  • Research goals
  • applications in physics
  • how should CNN computers be further developed?
    from physicist perspectives

6
Generating realistic random numbers
  • A good pseudo-random generator

Yalcin, et alle., Int.J. Circ. Theor. Appl., 32,
591-607, 2004
  • Chaotic cellular automaton perturbed
  • with the natural noise of the chip
  • P(t)P(t) xor N(t)
  • N(t) - very few black pixels
  • - strong correlations but
  • real stochastic fluctuations

P(t) P1(t) XOR P2(t)
7
  • a good random binary image in t116 µs
  • 1 single random value
  • ACE16K ?
    7ns
  • Pentium 4 at 2.8 GHz (Linux) ? 33ns

Increasing the size of the chip in the future
will assure even much bigger advantage for CNN
chips
Trend for the simulation time as a function of
the chip size
M. Ercsey-Ravasz, T. Roska, Z. Neda, Int. J. of
Modern Physics C, Vol. 17, No. 6, p. 909 (2006)
8
  • generating random images with different p
    density of the black pixels --- using more
    images with ½ density
  • --- if p is an n bit
    number we need n images

p0.25 p0.375 p0.03125
P Measured density
1/2 0.5 0.4999529
1/40.25 0.254261
1/80.125 0.124140
1/160.0625 0.061423
1/320.03125 0.031561
1/640.015625 0.015257
1/1280.0078125 0.007470
1/2560.00390625 0.004154
1/4 1/80.375 0.377712
  • Correlations
  • in space (first neighbors) 0.05 - 0.4
  • in time (consecutive steps) 0.7 - 0.8

M. Ercsey-Ravasz, T. Roska, Z. Neda, Int. J. of
Modern Physics C, Vol. 17, No. 6, p. 909 (2006)
9
Stochastic simulations on CNN computers
The site percolation problem
  • Used for modeling
  • conductivity or mechanical properties of
    composite materials
  • magnetization of dilute magnets at low
    temperatures
  • fluid passing through porous materials
  • propagation of diseases
  • Probability of percolation - density of black
    pixels
  • 2nd order geometrical phase-transition
  • With CNN 1 single template detecting
    percolation
  • input the random image
  • initial state the first row
  • output the parts connected to the first row

ACE16k chip
10
  • Percolation probability
  • - for each p 10000 different initial conditions
  • - results agree with the accepted critical value
  • pc0.407

Trend for the simulation time in function of the
chip size
  • Time needed
  • CNN t L
  • digital computers t L
  • For L128 CNN is slower
  • if L grows still promises advantage

2
M. Ercsey-Ravasz, T. Roska, Z. Neda, Int. J. of
Modern Physics C, Vol. 17, No. 6, p. 909 (2006)
11
The two-dimensional Ising model
Energy of the system
Metropolis algorithm - randomly choose a spin
and flip it with p probability
  • On CNN A parallel Metropolis algorithm is
    used
  • Because parallel computing we have to avoid
    flipping 2 neighbors simultaneously
    chessboard mask
  • Odd (even) step spins marked with black
    (white) are updated
  • Equivalent with a Metropolis algorithm in which
    spins are chosen in a well
    defined order

12
  • Algorithm scheme for 1 MC step
  • Build 3 masks marking
    -generate 2 random images
  • Spins with 4 similar neighbors (?E8J) M1
    ----AND------ P1 with exp(-8J/kT)
  • Spins with 3 similar neighbors (?E4J) M2
    ----AND------ P2 with exp(-4J/kT)
  • Other spins (?E?0) M3
  • Build the composed mask M(M1 AND P1) OR (M2 AND
    P2) OR M3
  • Use the (inverse) chessboard mask M M AND C in
    (even) odd steps
  • Flip the spins marked on M

T2 T2.3 T2.6 (
J/k1)
Movies obtained with the ACE16K chip
M. Ercsey-Ravasz, T. Roska, Z. Neda, Eur. Phys.
J. B, Vol. 51, No. 3, p. 407, (2006)
13
Specific heat
Results for the Ising model
Magnetization
Susceptibility
  • Initial state homogeneous
  • Boundary conditions fixed
  • 5000 transition MC steps
  • Averaging over 10000 MC steps

M. Ercsey-Ravasz, T. Roska, Z. Neda, Eur. Phys.
J. B, Vol. 51, No. 3, p. 407, (2006)
14
Time needed for 1 MC step (128128 lattice)
? 4.3 ms on the ACE16K chip ? 2.2 ms on a
Pentium 4 at 2.4 GHz
M. Ercsey-Ravasz, T. Roska, Z. Neda, Eur. Phys.
J. B, Vol. 51, No. 3, p. 407, (2006)
15
Optimization of spin-glasses on a space-variant
CNN
only simulated
  • final state after an operation yij ?1
  • Lyapunov function (energy) of the CNN

CNN
Spin-glass
  • monotone decreasing
  • final state local minimum (dE/dt0)

y?-1,1
y1
same local minima 1 operation ? 1 local minimum
16
The stochastic optimization algorithm
  • Same principles as in simulated annealing
  • noise random input U
  • b ? strength of noise
  • b slowly decreases
  • we choose
  • b05
  • ?b0.05

1 cooling process
17
NP-hard problem hard for plt0.6
  • Speed estimation
  • the A templates must be introduced only once for
    each problem
  • we can use the characteristic parameters of the
    ACE16k chip

1000- 5000 steps / second Independent of size !
Many applications error-correcting codes,
econophysics, computer science etc.
M. Ercsey-Ravasz, T. Roska, Z. Neda, Physica D
Nonlinear Phenomena, Special issue Novel
computing paradigms Quo vadis?, accepted,
(2008), http//dx.doi.org/10.1016/j.physd.2008.03
.028
18
Pulse-coupled oscillators communicating with
light pulses
Motivations - studying a CNN with pulse-coupled
oscillators -
communicating with light global coupling
- perspectives separately programmable
oscillators - first part of the study
collective behavior of identical units
  • The oscillators
  • electronic fireflies
  • simple integrate-and-fire type neurons
  • Photoresistor (R,U) LED
  • light R U
  • G threshold
  • if UgtG LED fires
  • not before Tmin
  • not after Tmax

19
Collective behavior
Tmin? 800 ms Tmax ? 2700 ms Firing ? 200
ms Reaction time of the photoresistor ? 40
ms Deviations 2-10
20
Order parameter - normalized phase-histogram
smoothing
21
Perspectives
  • Separately programmable oscillators
  • Tmin, Tmax, Tflash, light intensity A, threshold G

CNN model using pulse-coupled oscillators
Benefits - global coupling - dynamical
inputs - time-delays No independent A(i,jk,l)
  • pattern recognition, detecting spatio-temporal
    events
  • studying the role of reaction time ?
  • dynamically changing the parameters

22
Conclusion
  • Realistic random numbers
  • Stochastic simulations on lattice models
  • The site-percolation problem
  • The two-dimensional ising model
  • - many related problems could be also simulated
  • Locally variant CNN very fast stochastic
    optimization algorithm for spin-glass models
  • Further motivating the development of CNN-UM
    hardwares
  • CNN built up by pulse-coupled oscillators
  • Ineteresting collective behavior further
    studies
  • Communication with light could be useful idea
    also in hardware projects

23
Journal publications
  • M. Ercsey-Ravasz, T. Roska, Z. Néda,
    Perspectives for Monte Carlo simulations on the
    CNN universal machine, Int. J. of Modern Physics
    C, Vol. 17, No. 6, pp. 909-923, 2006
  • M. Ercsey-Ravasz, T. Roska, Z. Néda, Stochastic
    simulations on the cellular wave computers, Eur.
    Phys. J. B, Vol. 51, No. 3, pp. 407-412, 2006
  • M. Ercsey-Ravasz, T. Roska, Z. Néda,
    Statistical physics on cellular neural network
    computers, Physica D Nonlinear Phenomena, vol.
    Special issue Novel computing paradigms Quo
    Vadis?, 2008, accepted, http//dx.doi.org/10.1016
    /j.physd.2008.03.28

24
International conferences
  1. M. Ercsey-Ravasz, T. Roska, and Z. Neda, Random
    number generator and monte carlo type simulations
    on the cnn-um, in Proceedings of the 10th IEEE
    International Workshop on Cellular Neural
    Networks and their applications, (Istanbul,
    Turkey), pp. 4752, Aug. 2006.
  2. M. Ercsey-Ravasz, Z. Sarkozi, Z. Neda, A.
    Tunyagi, and I. Burda, Collective behavior of
    electronic fireflies, SynCoNet 2007
    International Symposium on Synchronization in
    Complex Networks, July 2007.
  3. M. Ercsey-Ravasz, T. Roska, and Z. Neda,
    Statistical physics on cellular neural network
    computers. International conference
    Unconventional computing Quo vadis?, Mar.
    2007.
  4. M. Ercsey-Ravasz, T. Roska, and Z. Neda,
    Spin-glasses on a locally variant cellular
    neural network. International Conference on
    Complex Systems and Networks, July 2007.
  5. M. Ercsey-Ravasz, T. Roska, and Z. Neda,
    Applications of cellular neural networks in
    physics. RHIC Winterschool, Nov. 2005.
  6. M. Ercsey-Ravasz, T. Roska, and Z. Neda, The
    cellular neural network universal machine in
    physics. International Conference on
    Computational Methods in Physics, Nov. 2006.
  7. M. Ercsey-Ravasz, T. Roska, and Z. Neda,
    NP-hard optimization using locally variant CNN,
    accepted in the Proceedings of the CNNA2008.

25
Thank You!
Write a Comment
User Comments (0)
About PowerShow.com