Why Optics? - PowerPoint PPT Presentation

1 / 46
About This Presentation
Title:

Why Optics?

Description:

... Fiber Diffraction Grating Grating Equation Grating Fourier Analysis Grating for Laser Tuning Monochrometer Acousto-Optical Modulator Acoustic Wave: ... – PowerPoint PPT presentation

Number of Views:196
Avg rating:3.0/5.0
Slides: 47
Provided by: eceNeuEd3
Category:

less

Transcript and Presenter's Notes

Title: Why Optics?


1
ECEG105Optics for EngineersCourse NotesPart 7
Diffraction
Prof. Charles A. DiMarzio Northeastern
University Fall 2007
August 2007
2
Diffraction Overview
  • General Equations
  • Fraunhofer
  • Fourier Optics
  • Special Cases
  • Image Resolution
  • Diffraction Gratings
  • Acousto-Optical Modulators
  • Fresnel
  • Cornu Spiral
  • Circular Apertures
  • Summary

It's All About ?/D
??/D
D
August 2007
3
Difraction Quantum Approach
  • Uncertainty
  • Photon Momentum
  • Uncertainty in p
  • Angle of Flight
  • For a Better Result
  • Use Exact PDF
  • Gaussian is best
  • Satisfies the equality
  • Minimum-uncertainty wavepacket

4
Quantum Diffraction Examples
200 Random Paths
Aperture 1 ?
Aperture 5 ?
Aperture 2 ?
Aperture 10 ?
5
(No Transcript)
6
Summary of Diffraction Math
Scalar Fields
Maxwells Equations
Greens Theorem
Fresnel Diffraction
Obliquity2, Paraxial Approximation
Helmholtz Equation
Simple Systems
Shadows and Zone Plates
Yee Numerical Methods
rgtgt?
Fraunhofer Conditions
Fresnel- Kirchoff Integral Formula
Kirchoff Integral Theorem
x,y Separable Problems
Spheres
Fourier Transforms
Mie Scattering
Polar Symmetry
All Scalar Wave Problems
Fields Far From Aperture
Hankel Transforms
General Problems
Circular Apertures
7
Kirchoff Integral Theorem (1)
  • General Wave Probs.
  • Solve Maxwell's Eqs.
  • Use Boundary Conditions
  • Hard or Impossible
  • Kirchoff Integral Approach
  • Algorithmic
  • Correct (Almost)
  • Based on Maxwell's Equations
  • Scalar Fields
  • Complete
  • Amplitude and Phase
  • Amenable to Approximation
  • Comp. Efficient?
  • Intuitive
  • Similar to Huygens

8
Kirchoff Integral Theorem (2)
  • The Idea
  • Consider Point of Interest
  • Correlate Wavefronts
  • Best Wavefront
  • Converging Uniform Spherical Wave
  • Actual Wavefront
  • The Mathematics
  • Start with Converging Spherical Wave
  • Green's Theorem
  • Helmholtz Equation
  • Ties to Maxwell's Equations (Scalar Field)
  • Various Approximations
  • Numerical Techniques
  • Results
  • Fresnel Diffraction
  • Fraunhofer Diffraction

9
Kirchoff Integral Setup
Surface A
Surface A0
P
The Goal A Greens Function Approach.
10
Kirchoff Integral Thm. Solution
11
Helmholtz-Kirchoff Integral
Surface A
Surface A0
P
Surface A
A0
r
r
P
12
H-K Integral Approximations
13
Some Approximations
14
(No Transcript)
15
Integral Expressions
(Hankel Transform)
16
(No Transcript)
17
Fraunhofer Diffraction
  • Equations
  • A Hint of Fourier Optics
  • Numerical Computations
  • Special Cases (Gaussian, Uniform)
  • Imaging
  • Brief Comment on SM and MM Fibers
  • Gratings
  • Brief Comment on Acousto-Optics

August 2007
18
Fraunhofer Diffraction (1)
Very Important Parameter
19
Fraunhofer Diffraction (2)
20
Fraunhofer Lens (1)
21
(No Transcript)
22
(No Transcript)
23
Numerical Computation (1)
24
(No Transcript)
25
Circular Aperture, Uniform Field
D
h
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
(No Transcript)
31
Diffraction Grating
Reflection Example
d
?i
?d
32
Grating Equation
sin(?d)
5
1
4
3
0.5
sin(?i)
2
1
0
n0
-sin(?i)
-0.5
-1
-2
-1
-100
0
100
200
-3
Reflected Orders
Transmitted Orders
degrees
33
(No Transcript)
34
Grating for Laser Tuning
Gain
f
Cavity Modes
f
?i
August 2007
35
Monochrometer
?i
Aliasing
n1
n2
n3
sin?
August 2007
36
Acousto-Optical Modulator
  • Acoustic Wave
  • Sinusoidal Grating
  • Wavefronts as Moving Mirrors
  • Signal Enhancement
  • Doppler Shift
  • Acoustic Frequency Multiplied by Order

Sound Source
Absorber
More Rigorous Analysis is Possible but Somewhat
Complicated
August 2007
37
Fresnel Diffraction
  • Fraunhofer Diffraction Assumed
  • Obliquity 2
  • Paraxial Approximation
  • At focus or at far field
  • Relax the Last Assumption
  • More Complicated Integrals
  • Describe Fringes at edges of shadows

38
Rectangular Aperture
39
(No Transcript)
40
(No Transcript)
41
Small Aperture
  • ?500 nm, 2a100?m, z5m.
  • Fraunhofer Diffraction would have worked here.

0.8
1.4
0.6
1.2
0.4
1
0.2
0.8
0
0.6
-0.2
0.4
-0.4
0.2
-0.6
-0.8
0
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
-6
-4
-2
0
2
4
6
8
position, mm
-3
42
Large Aperture
?500 nm, 2a1mm, z5m.
0.8
3
0.6
2.5
0.4
2
0.2
0
1.5
-0.2
1
-0.4
0.5
-0.6
-0.8
0
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
-0.02
-0.015
-0.01
-0.005
0
0.005
0.01
0.015
0.02
0.025
position, m
43
(No Transcript)
44
(No Transcript)
45
(No Transcript)
46
Summary of Diffraction Math
Scalar Fields
Maxwells Equations
Greens Theorem
Fresnel Diffraction
Obliquity2, Paraxial Approximation
Helmholtz Equation
Simple Systems
Shadows and Zone Plates
Yee Numerical Methods
rgtgt?
Fraunhofer Conditions
Fresnel- Kirchoff Integral Formula
Kirchoff Integral Theorem
Spheres
Fourier Transforms
Separable Problems
Mie Scattering
Polar Symmetry
All Scalar Wave Problems
Fields Far From Aperture
Hankel Transforms
General Problems
Circular Apertures
Write a Comment
User Comments (0)
About PowerShow.com