Title: Thompson
1Thompsons Experiment
2Rutherfords Experiment
3Explanation
4(No Transcript)
5- Diffraction- the change in direction of a wave
as - it passes the edge of an object
6The Wave Nature of Light
- Light as electromagnetic waves polarization,
interference, diffraction, reflection, and
refraction
7(No Transcript)
8Electromagnetic Spectrum
9(No Transcript)
10(No Transcript)
11Atomic Line Spectra (Line Emission Spectra)
Hydrogen has the simplest atomic emission
spectrum ( 1880s).
12The Spectrum of Atomic Hydrogen
Compare the absorption spectrum to the emission
spectrum of H
If we pass light from a continuous source (eg
from a hot object) through a substance, then the
continuous spectrum has some of the wavelengths
removed! -- absorption spectrum
13(No Transcript)
14Light as Particles
15Bohr Atom
16Hidrojen Için Bohr Atom Modeli (1913)
Elektronlar belirli yörüngelerde bulunabilirler
17Bohr Model of Hydrogen Atoms
Assumptions
Quantized energy levels total energy for each
level is the sum of the kinetic energy of the
electron plus its potential energy. Electrons do
not radiate while in their orbits, but do when
they move from one orbit to another.
18E? 0 eV
Paschen Series (IR)
n 3
Balmer Series (visible)
n 2
Energy
Lyman Series (ultraviolet)
E1 -13.6 eV
n 1
Lyman
Balmer
Paschen
Example Data
19Line Spectra
The Lyman and Balmer series of lines in the
hydrogen spectrum correspond to transitions that
the electrons make between higher and lower
energy levels. The Bohr model only has one
quantum number, n, which represents the energy
level.
http//www.walter-fendt.de/ph11e/bohrh.htm
20Electron in the Hydrogen Atom
21- Elektronlar gerçekten de çekirdek etrafinda
belirli yörüngelerde mi dönerler? - Bunu tespit etmek mümkün mü?
22Elektronun konumu ve momentumunun ölçülmesi
- Isinin her çarpisinda elektronun da konumu
degisir. Bu sebeple isikla bir elektronunun
konumu ve hizi hassas bir sekilde belirlenemez.
23Heisenberg, Werner190176, Alman Fizikçi 1932
Nobel Fizik Ödülü
- Eger bir tanecigin nerede oldugunu kesin olarak
biliyorsak, ayni anda tanecigin nereden geldigini
ve nereye gittigini kesin sekilde bilemeyiz.
24- Peki elektronlar nerede ve nasil hareket
ediyorlar?
25Erwin Schrödinger 1927 yilinda
- Elektronlar, zamanlarinin büyük bir çogunlugunu
orbital denen bölgelerde geçirirler. - Degisik sekillerde orbitaller mevcuttur.
26Atomik Orbitaller
- Sekli Orbital sayisi e sayisi
- s küresel 1 2
- p halter 3 6
- d karisik 5 10
- f karisik 7 14
- Herbir orbital 2 elektron içerir
27Quantum Mechanics
28The First Shell
- The innermost shell (1) only contains an s
orbital. Â
1s
29Atomic Orbitals, s-type
30S orbitalleri
31Atomic Structure
32Quantum Mechanics
33Electron Configuration in p Orbital
34Atomic Orbitals, p-type
35p Orbitals
- Rather than being a sphere, the "p" orbital has
two lobes pointed in opposite direction away from
the nucleus. Â - One p orbital points along each the x, y, and z
axis. - There are three p orbtitals in every shell except
the first.
36The Second Shell
- The second shell contains an s type orbital as
well as a new kind of orbital called a "p"
orbital.
2py
2px
2pz
2s
37Atomic Orbitals, d-type
38d Orbitals
- There are 5 types of d orbitals. Four of the five
have four lobes at 90o to one another. The fifth
looks like a donut around a p-orbital
Image from HMChem
39The Third Shell
- The 3rd shell has
- 1 s orbital (3s)
- 3 p orbitals (3px, 3py, 3pz)
- 5 d orbitals (3dxy, 3dyz, 3dxz, 3dx2-y2, 3dz2)
40(No Transcript)
41f orbitals
- f-orbitals have 6 lobes and are very challenging
to envision
Image from HMChem
42The First Two Shells
Picture from and more info on How Atoms Work
43The Fouth Shell
- The 4th shell has
- 1 s orbital (4s)
- 3 p orbitals (4px, 4py, 4pz)
- 5 d orbitals (4dxy, 4dyz, 4dxz, 4dx2-y2, 4dz2)
- 7 f orbitals
44Principle quantum number n 1, 2, 3,..
describes orbital size and
energy Angular momentum quantum number l 0 to
n-1 describes orbital shape
Magnetic quantum number ml l, l-1-l
describes orientation in space
of the orbital relative to the other
orbitals in the atom
Spin quantum number ms 1/2 or -1/2
describes the direction of spin of
the e- on its axis Pauli Exclusion Principle
"no two electrons in an atom can have the same
set of quantum numbers", or, only two electrons
(of opposite spin) per orbital.
45Write a valid set of quantum numbers for each of
the following sub-shells (a) 2 s n 2, l
0, ml 0, ms - 1/2 n 2, l 0, ml 0, ms
1/2 2 combinations
46Write a valid set of quantum numbers for each of
the following sub-shells (a) 2 s n 2, l
0, ml 0, ms - 1/2 n 2, l 0, ml 0, ms
1/2 2 combinations (b) 2 p n 2, l 1,
ml -1, ms - 1/2 n 2, l 1, ml -1, 0
or 1, ms 1/2 6 combinations
47Write a valid set of quantum numbers for each of
the following sub-shells (a) 2 s n 2, l
0, ml 0, ms - 1/2 n 2, l 0, ml 0, ms
1/2 2 combinations (b) 2 p n 2, l 1,
ml -1, ms - 1/2 n 2, l 1, ml -1, 0
or 1, ms 1/2 6 combinations (c) 3 d n
3, l 2, ml -2, ms - 1/2 n 3, l 2, ml
-2, -1, 0, 1, or 2, ms 1/2 10 combinations
48How many orbitals in a subshell? l 0,
1s 1 l 1, px, py, pz 3 l 2,
dxy,, dxz,, dyz ,, dx2-y2, dz2 5
49How many orbitals in a subshell? l 0,
1s 1 l 1, px, py, pz 3 l 2,
dxy,, dxz,, dyz ,, dx2-y2, dz2 5 2 l 1
orbitals per subshell
50How many orbitals in a subshell? l 0,
1s 1 l 1, px, py, pz 3 l 2,
dxy,, dxz,, dyz ,, dx2-y2, dz2 5 2 l 1
orbitals per subshell How many orbitals in a
shell? n 1, 1s 1 n 2, 2s, 2px, 2py,
2pz 4 n 3, 3s, 3px, 3py, 3pz, 3dxy,,
3dxz,, 3dyz ,, 3dx2-y2, 3dz2 9
51How many orbitals in a subshell? l 0,
1s 1 l 1, px, py, pz 3 l 2,
dxy,, dxz,, dyz ,, dx2-y2, dz2 5 2 l 1
orbitals per subshell How many orbitals in a
shell? n 1, 1s 1 n 2, 2s, 2px, 2py,
2pz 4 n 3, 3s, 3px, 3py, 3pz, 3dxy,,
3dxz,, 3dyz ,, 3dx2-y2, 3dz2 9 n2 orbitals per
principal quantum level
52- Hydrogen atom-
- all orbitals within a shell have the same energy
- electrostatic interaction between e- and proton
53- Hydrogen atom-
- all orbitals within a shell have the same energy
- electrostatic interaction between e- and proton
- Multi-electron atoms-
- the energy level of an orbital depends not only
on the - shell but also on the subshell
- electrostatic interactions between e- and proton
and other e-
54Orbital Energies
3dxy
3dxz
3dyz
3dx2-y2
3dz2
3px
3py
3pz
3s
Energy
2px
2py
2pz
2s
1s
55Electronic Configuration Filling-in of Atomic
Orbitals Rules 1. Pauli Principle
56Electronic Configuration Filling-in of Atomic
Orbitals Rules 1. Pauli Principle 2. Fill
in e-'s from lowest energy orbital upwards
(Aufbau Principle)
57Electronic Configuration Filling-in of Atomic
Orbitals Rules 1. Pauli Principle 2. Fill
in e-'s from lowest energy orbital upwards
(Aufbau Principle) 3. Try to attain maximum
number of unpaired e- spins in a given
sub-shell (Hund's Rule)
58Electronic Configuration Filling-in of Atomic
Orbitals Rules 1. Pauli Principle 2. Fill
in e-'s from lowest energy orbital upwards
(Aufbau Principle) 3. Try to attain maximum
number of unpaired e- spins in a given
sub-shell (Hund's Rule)
H (Z 1) 1s1
2s 2p
Energy
1s
59Electronic Configuration Filling-in of Atomic
Orbitals Rules 1. Pauli Principle 2. Fill
in e-'s from lowest energy orbital upwards
(Aufbau Principle) 3. Try to attain maximum
number of unpaired e- spins in a given
sub-shell (Hund's Rule)
N (Z 7) 1s2, 2s2, 2p3,
2p
2s
Energy
1s
60Electronic Configuration Filling-in of Atomic
Orbitals Rules 1. Pauli Principle 2. Fill
in e-'s from lowest energy orbital upwards
(Aufbau Principle) 3. Try to attain maximum
number of unpaired e- spins in a given
sub-shell (Hund's Rule)
B (Z 5) 1s2, 2s2, 2p1
2p
2s
Energy
1s
61Electronic Configuration Filling-in of Atomic
Orbitals Rules 1. Pauli Principle 2. Fill
in e-'s from lowest energy orbital upwards
(Aufbau Principle) 3. Try to attain maximum
number of unpaired e- spins in a given
sub-shell (Hund's Rule)
F (Z 9) 1s2, 2s2, 2p5
2p
2s
Energy
1s
62Hydrogen 2s 3s 4s 1s
2p 3p 4p 3d 4d 4f Multi-electron
atoms 1s 2s 3s 4s 5
s 2p 3p 4p 3d 4d
63 1s 2s 2px 2py 2pz
H 1s1 He 1s2 Li 1s2, 2s1 Be 1s2,
2s2 B 1s2, 2s2, 2px1 C 1s2, 2s2, 2px1, 2py1 N
1s2, 2s2, 2px1, 2py1, 2pz1 O 1s2, 2s2,
2px2, 2py1, 2pz1 F 1s2, 2s2, 2px2, 2py2,
2pz1 Ne 1s2, 2s2, 2px2, 2py2, 2pz2
64H 1s1 He 1s2 Li He, 2s1 Be He, 2s2
65H 1s1 He 1s2 Li He, 2s1 Be He,
2s2 B He, 2s2, 2p1 Ne He, 2s2, 2p6 Na
He, 2s2, 2p6, 3s1 ? Ne, 3s1
66H 1s1 He 1s2 Li He, 2s1 Be He,
2s2 B He, 2s2, 2p1 Ne He, 2s2, 2p6 Na
He, 2s2, 2p6, 3s1 ? Ne, 3s1 Mg He, 2s2,
2p6, 3s2 ? Ne, 3s2 Al Ne, 3s2, 3p1 Si
Ne, 3s2, 3p2
67H 1s1 He 1s2 Li He, 2s1 Be He,
2s2 B He, 2s2, 2p1 Ne He, 2s2, 2p6 Na
He, 2s2, 2p6, 3s1 ? Ne, 3s1 Mg He, 2s2,
2p6, 3s2 ? Ne, 3s2 Al Ne, 3s2, 3p1 Si
Ne, 3s2, 3p2 P Ne, 3s2, 3p3 S Ne, 3s2,
3p4 Cl Ne, 3s2, 3p5 Ar Ne, 3s2, 3p6
68- H 1s1 He 1s2
- Li He, 2s1 Be He, 2s2
- B He, 2s2, 2p1 Ne He, 2s2, 2p6
- Na He, 2s2, 2p6, 3s1 ? Ne, 3s1
- Mg He, 2s2, 2p6, 3s2 ? Ne, 3s2
- Al Ne, 3s2, 3p1 Si Ne, 3s2, 3p2
- P Ne, 3s2, 3p3 S Ne, 3s2, 3p4
- Cl Ne, 3s2, 3p5 Ar Ne, 3s2, 3p6
- outermost shell - valence shell
- most loosely held electron and are the most
important - in determining an elements properties
69K Ar, 4s1 Ca Ar, 4s2 Sc Ar, 4s2, 3d1
Ti Ar, 4s2, 3d2
70K Ar, 4s1 Ca Ar, 4s2 Sc Ar, 4s2, 3d1
Ca Ar, 4s2, 3d2 Zn Ar, 4s2, 3d10 Ga
Ar, 4s2, 3d10, 3p1 Kr Ar, 4s2, 3d10, 3p6
71K Ar, 4s1 Ca Ar, 4s2 Sc Ar, 4s2, 3d1
Ca Ar, 4s2, 3d2 Zn Ar, 4s2, 3d10 Ga
Ar, 4s2, 3d10, 3p1 Kr Ar, 4s2, 3d10,
3p6 Anomalous electron configurations d5 and
d10 are lower in energy than expected Cr
Ar, 4s1, 3d5 not Ar, 4s2, 3d4
Cu Ar, 4s1, 3d10 not Ar, 4s2, 3d9
72Electron Configuration of Ions Electrons lost
from the highest energy occupied orbital of the
donor and placed into the lowest unoccupied
orbital of the acceptor (placed according to the
Aufbau principle)
73Electron Configuration of Ions Electrons lost
from the highest energy occupied orbital of the
donor and placed into the lowest unoccupied
orbital of the acceptor (placed according to the
Aufbau principle) Examples Na Ne,
3s1 Na Ne e- Cl Ne, 3s2, 3p5 e-
Cl- Ne, 3s2, 3p6 Mg Ne, 3s2 Mg2
Ne O He, 2s2, 2p4 O2- He, 2s2, 2p6
74- Modern Theories of the Atom - Summary
- Wave-particle duality of light and matter
- Bohr theory
- Quantum (wave) mechanical model
- Orbital shapes and energies
- Quantum numbers
- Electronic configuration in atoms