3-Atomic Structure - PowerPoint PPT Presentation

About This Presentation
Title:

3-Atomic Structure

Description:

3-Atomic Structure Overview Characteristics of Atoms Interaction b/tw matter and light Photoelectric Effect Absorption and Emission Spectra Electron behavior – PowerPoint PPT presentation

Number of Views:338
Avg rating:3.0/5.0
Slides: 56
Provided by: DorisRKi4
Category:

less

Transcript and Presenter's Notes

Title: 3-Atomic Structure


1
3-Atomic Structure
  • Overview
  • Characteristics of Atoms
  • Interaction b/tw matter and light
  • Photoelectric Effect
  • Absorption and Emission Spectra
  • Electron behavior
  • Quantum numbers

2
Atomic Structure
  • Atomic orbitals
  • Orbital energies
  • Electron configuration and the periodic table
  • Periodic table
  • Periodic properties
  • Energy

3
Characteristics of Atoms
  • Atoms possess mass
  • Atoms contain positive nuclei
  • Atoms contain electrons
  • Atoms occupy volume
  • Atoms have various properties
  • Atoms attract one another
  • Atoms can combine with one another to form
    molecules

4
Atomic Structure
  • Atomic structure studied through atomic
    interaction with light
  • Light electromagnetic radiation
  • carries energy through space
  • moves at 3.00 x 108 m/s in vacuum
  • wavelike characteristics

5
Electromagnetic Spectrum
6
Visible Spectrum
7
Wavelength (?) Frequency (?)
amplitude
? number of complete cycles to pass given point
in 1 second
8
Energy
  • c ? x ? 3.00 x 108 m/s
  • long wavelength ? low frequency

Low Energy
High Energy
short wavelength ? high frequency
9
Energy
  • Mathematical relationship
  • E h?
  • E energy
  • h Plancks constant 6.63 x 1034 J s
  • ? frequency in s1

10
Energy
  • Mathematical relationship
  • E h?
  • c ? x ?

Energy directly proportional to
frequency inversely proportional to wavelength
11
Problems 3-1, 2, 3
  • a) Calculate the wavelength of light with a
    frequency ? 5.77 x 1014 s1
  • b) What is the energy of this light?
  • 2. Which is higher in energy, light of
    wave-length of 250 nm or light of 5.4 x 107 m?
  • 3. a) What is the frequency of light with an
    energy of 3.4 x 1019 J?
  • b) What is the wavelength of light with an
    energy of 1.4 x 1020 J?

12
Photoelectric Effect
  • Light on metal surface
  • Electrons emitted
  • Threshold frequency, ?o
  • If ? lt ?o, no photoelectric effect
  • If ? gt ?o, photoelectric effect
  • As ? ?, kinetic energy of electrons ?

13
Photoelectric Effect
  • Einstein energy ? frequency
  • If ? lt ?o electron doesnt have enough energy to
    leave the atom
  • If ? gt ?o electron does have enough energy to
    leave the atom
  • Energy is transferred from light to electron,
    extra is kinetic energy of electron
  • Ephoton h?photon h?o KEelectron
  • KEelectron h?photon h?o
  • Animation

14
Problem 3-4
  • A given metal has a photoelectric threshold
    frequency of ?o 1.3 x 1014 s?1. If light of ?
    455 nm is used to produce the photoelectric
    effect, determine the kinetic energy of the
    electrons that are produced.

15
Bohr Model
  • Line spectra
  • Light through a prism ? continuous spectrum

Ordinary white light
16
Bohr Model
  • Line spectra
  • Light from gas-discharge tube
  • through a prism ? line spectrum

H2 discharge tube
17
Line Spectra (emission)
  • White light

H
He
Ne
18
Line Spectra (absorption)
Gas-filled tube
Light source
19
Bohr Model
  • For hydrogen

C 3.29 x 1015 s1
Niels Bohr Electron energy in the atom is
quantized.
n 1, 2, 3,. RH 2.18 x 1018 J
20
Bohr Model
  • ?Eatom ?Eelectron h?
  • ?E Ef Ei h?

Minus sign free electron has zero energy
Line spectrum Photoelectric effect
21
Bohr Energy Levels
22
Electrons
  • All electrons have same charge and mass
  • Electrons have properties of waves and particles
    (De Broglie)

23
Heisenberg Uncertainty Principle
  • Cannot simultaneously know the position and
    momentum of electron
  • ???x h
  • Recognition that classical mechanics dont work
    at atomic level.

24
Schrödinger Equation
  • Erwin Schrödinger 1926
  • Wave functions with discrete energies
  • Less empirical, more theoretical
  • ?n En
  • ?n wave functions or orbitals
  • ?n2 probability density functions

25
Quantum Numbers
  • Each orbital defined by 3 quantum numbers
  • Quantum number number that labels state of
    electron and specifies the value of a property

26
Quantum Numbers
  • Principal quantum number, n (shell)
  • Specifies energy of electron (analogous to Bohrs
    n)
  • Average distance from nucleus
  • n 1, 2, 3, 4..

27
Quantum Numbers
  • Azimuthal quantum number, ? (subshell)
  • 0, 1, 2 n1
  • n 1, ? 0
  • n 2, ? 0 or 1
  • n 3, ? 0, 1, or 2
  • Etc.

0 1 2 3 4
s p d f g
28
Quantum Numbers
  • Magnetic quantum number, m?
  • Describes the orientation of orbital in space
  • m? ?. ?
  • If ? 2, m? 2, 1, 0, 1, 2

29
Problem 3-5
  • Fill in the quantum numbers in the table below.

n ? m?
3 0 0 3s
2 2, 1, 0, 1, 2
0
2p
30
Schrödinger Equation
  • Wave equations ?
  • Each electron has ? E associated w/ it
  • Probability Density Functions ?2
  • -graphical depiction of high probability of
    finding electron

31
Probability Density Functions
Link to Ron Rineharts page
  • ? energy
  • ?2 probability density function
  • s, p, d, f, g
  • 1s

3s
2s
Node area of 0 electron density
32
Probability Density Functions
  • 2p

Node area of 0 electron density
nodes
Link to Ron Rineharts page
33
Electrons and Orbitals
  • Pauli Exclusion Principle no two electrons in
    the same atom may have the same quantum numbers
  • Electron spin quantum number ms ?½
  • Electrons are spin paired within a given orbital

34
Electrons and Orbitals
  • n 1
  • ? 0, m? 0, ms ?½
  • 2 electrons possible
  • 1,0,0,½ and 1,0,0,½
  • 2 electrons per orbital
  • 1s1 H
  • 1s2 He

35
Electrons and Orbitals
  • n 2
  • ? 0, m? 0, ms ?½
  • 2,0,0, ?½
  • 2 electrons possible
  • n 2
  • ? 1, m? 1,0,1, ms ?½
  • 2,1,1, ?½ 2,1,0, ?½ 2,1,1, ?½
  • 6 electrons possible

36
Electron Configurations
  • n 1
  • 1s 2 electrons possible
  • H 1e 1s1

?
He 2e 1s2
??
37
Electron Configurations
  • n 2
  • 2s 2 electrons possible

Li 3e 1s2 2s1
?
2s
??
1s
Be 4e 1s2 2s2
??
2s
??
1s
38
Electron Configurations
  • n 2
  • 2p ? 1, m? 1, 0, 1
  • 3 x 2p orbitals (px, py, pz) 6 electrons possible

B 5e 1s2 2s2 2p1
39
Electron Configurations
  • n 2
  • 2p ? 1, m? 1, 0, 1
  • 3 x 2p orbitals (px, py, pz) 6 electrons possible

2p
?
B 5e 1s2 2s2 2p1
??
2s
1s
??
40
Electron Configurations
  • n 2
  • 2p ? 1, m? 1, 0, 1

C 6e 1s2 2s2 2p2
Hunds Rule for degenerate orbitals, the lowest
energy is attained when electrons w/ same spin is
maximized
41
Problem 3-6
  • Write electron configurations and depict the
    electrons for N, O, F, and Ne.

42
Electron Configurations
  • n 3
  • 3s, 3p, 3d

Na 11e 1s2 2s2 2p63s1
43
Electron Configurations
  • n 3
  • 3s, 3p, 3d

Mg 12e 1s2 2s2 2p63s2
44
Electron Configurations
  • n 3
  • 3s, 3p, 3d

Al 13e 1s2 2s2 2p63s23p1
45
Electron Configurations
  • n 3
  • 3s, 3p, 3d

Si 14e 1s2 2s2 2p63s23p2
46
Electron Configurations
  • n 3
  • 3s, 3p, 3d

P 15e 1s2 2s2 2p63s23p3
47
Electron Configurations
  • n 3
  • 3s, 3p, 3d

S 16e 1s2 2s2 2p63s23p4
48
Electron Configurations
  • n 3
  • 3s, 3p, 3d

Cl 17e 1s2 2s2 2p63s23p5
49
Electron Configurations
  • n 3
  • 3s, 3p, 3d

Ar 18e 1s2 2s2 2p63s23p6
50
Electron Configurations
  • 3d vs. 4s
  • Filling order

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p
6d 7s 7p
51
Electron Configurations
4p
3d
K
?
4s
3p
??
??
??
??
3s
2p
??
??
??
??
2s
1s
??
52
Electron Configurations
4p
3d
Ca
??
4s
3p
??
??
??
??
3s
2p
??
??
??
??
2s
1s
??
53
Electron Configurations
4p
?
3d
Sc
??
4s
3p
??
??
??
??
3s
2p
??
??
??
??
2s
1s
??
54
Electron Configurations
4p
?
?
3d
Ti
??
4s
3p
??
??
??
??
3s
2p
??
??
??
??
2s
Link to OSU site
1s
??
55
Problem 3-7
  • Write the electron configurations for the
    transition metals V Zn. Fill in the
    corresponding boxes to denote the electronic spin.
Write a Comment
User Comments (0)
About PowerShow.com