Biocompatibility - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

Biocompatibility

Description:

Biocompatibility Filip Ilievski DMSE, MIT 5.22J Production/Engineering Overview Biomaterials and rules of selection Basic materials science Surface properties ... – PowerPoint PPT presentation

Number of Views:615
Avg rating:3.0/5.0
Slides: 31
Provided by: FilipIl2
Category:

less

Transcript and Presenter's Notes

Title: Biocompatibility


1
Biocompatibility
  • Filip Ilievski
  • DMSE, MIT
  • 5.22J Production/Engineering

2
Overview
  • Biomaterials and rules of selection
  • Basic materials science
  • Surface properties influencing host response
  • Modes of failure of biomaterials
  • Look at stainless steel and cobalt chromium
    alloys
  • Conclusions
  • Questions

3
What are Biomaterials?
  • A nonviable material used in a medical device,
    intended to interact with biological systems.

Williams, 1987
4
What governs materials choice?
  • Historically
  • Bulk properties matched to those of natural
    organs
  • Mechanical (ex. modulus)
  • Chemical (ex. degradation)
  • Optical (ex. whiteness)
  • Ability to process
  • Federal Regulations

5
What governs materials choice? (cont.)
  • Today
  • Rational design of biomaterials based on better
    understanding of natural materials and their
    material/biological organism interface
  • Adoption of the Materials Engineering Paradigm

6
Materials Engineering Paradigm
7
What is Structure?
  • Primary Chemical Structure
  • Primary Bonds
  • Secondary Bonds
  • Higher Order Structure (1-100nm)
  • 3D arrays of atoms or molecules
  • Microstructure (1um)
  • Crystal Grains

8
Higher Order Structure
BCC
FCC
webelements.com
9
Microstructure
Lehigh U Institute for Metal Forming
10
Surface Properties
  • Wettability
  • Roughness
  • Electrical Charge
  • Crystallinity
  • Composition
  • Mobility

11
Surface Energy
  • Surface tension, g, is the work required to
    create unit surface area at constant T, P and
    composition.
  • Minimize Gibbs free energy
  • g(metals) gt g (oxides) gt g (water) gt
    g(organics)

12
Surface Phenomena
  • Adsorption of a species from environment
  • Surface segregation of a species from bulk
  • Surface reconstruction
  • Surface reaction

13
Oxidation of Metals
xM ½y O2 ? MxOy
Metal Oxide
O2
O2
O2
Metal alloy
14
Acid/Base Reactions on Oxides
M2 acts as an electron pair acceptor for oxygen
lone pairs
H2O cleavage with H transfer to surface basic
O-2 site OH- coordination with M2
O2- M2 O2- M2
15
Aqueous Corrosion of Metals
  • Why does it happen?
  • Mz diffusion will ALWAYS occur
  • Oxide may dissolve
  • What is it?
  • Corrosion is the destructive result of chemical
    reaction between a metal or metal alloy and its
    environment, and involves an electronic charge
    transfer (i.e. and electrochemical reaction)

Ratner et. al.
16
Corrosion reactions
  • Typically, metal surface acts both as anode and
    cathode in different regions.
  • Anodic reaction
  • M ? Mz ze-
  • Cathodic reactions
  • O2(dissolved) 4H 4e- ? 2H2O
  • 2H 2e- ?H2?
  • O2(dissolved) 4H2O 4e- ? 4OH-


acidic

basic
17
In vivo environment
  • pH 7.4
  • T 37oC
  • Anions Cl-, PO3-, HCO3-
  • Cations Na, K, Ca2, Mg2

18
Pitting corrosion of SS
Fe2 ? Fe3 e- O2 4H2O 4e- ? 4OH-
Fe ? Fe22e- Fe22Cl-2H2O ? Fe(OH)2 2HCl
Fe3 OH- ? Fe(OH)3
(Fe, Cr)2O3
Fe-9Cr
19
Other types of corrosion
  • Crevice corrosion
  • Fretting corrosion (mechanical damage)
  • Intergranular corrosion (2 phases)
  • Microbiological corrosion
  • Stress corrosion cracking

Ratner, et. al.
20
Stainless steel - composition
  • 316L (bar, wire, sheet, strip..)
  • Fe 60-65
  • Cr 17-19
  • Ni 12-14
  • 2-3 of
  • Mn max 2
  • Cu max 0.5
  • C max 0.03
  • N max 0.1
  • P max 0.025
  • Si max 0.75
  • S max 0.01

Ratner, et. al.
21
SS microstructure
  • Cr is added to permit development of passivating
    strongly adherent Cr2O3
  • Cr stabilizes the BCC, weaker than FCC
  • Ni added for austenitic phase stabilization
  • Low carbon because Cr23C6 can precipitate at
    grain boundaries, depleting Cr from neighbouring
    grains.

Ratner, et. al.
22
Microstructure affects corrosion
Lehigh U Institute for Metal Forming
23
SS mechanical properties
  • Annealed
  • Youngs modulus 190 GPa
  • Yield strength 331 MPa
  • Tensile strength 586 MPa
  • Fatigue 241-276 x 107 cycles
  • 30 Cold worked
  • Youngs modulus 190 GPa
  • Yield strength 792 MPa
  • Tensile strength 930 MPa
  • Fatigue 310-448 x 107 cycles

Ratner, et. al.
24
Co-Cr alloys and composition
  • F75 (Co-Cr-Mo), F799 (Forged Co-Cr-Mo)
  • Co 58.9-69.5
  • Cr 27-30
  • Mo 5-7
  • lt1 Mn, Si, Ni, Fe, C
  • F90 (Co-Cr-W-Ni, Wrought Co-Cr)
  • Co 45-56
  • Cr 19-21
  • W 14-16
  • Mo 9-11
  • Fe max 3
  • lt1 of Mn, C, P, Si, S

Ratner, et. al.
25
Co-Cr alloys continued
  • F562 (Co-Ni-Cr-Mo-Ti, Biophase)
  • Co 29-38.8
  • Ni 33-37
  • Cr 19-21
  • Mo 9-10.5
  • lt1 Ti, Si, S, Fe, Mn

Ratner, et. al.
26
Co-Cr microstructure
  • Strongly influenced by processing
  • Investment casting
  • Powder isotactic pressing
  • Cold and hot forging
  • Annealing

Ratner, et. al.
27
Co-Cr mechanical properties
  • F75 as cast or annealed/F90 annealed
  • Youngs modulus 210 GPa
  • Yield strength 445-517 MPa
  • Tensile strength 655-889 MPa/ 951-1220MPa
  • Fatigue 207-310 x 107 cycles /NA
  • F562 cold forged
  • Youngs modulus 232 GPa
  • Yield strength 1500 MPa
  • Tensile strength 1795 MPa
  • Fatigue 689-793 x 107 cycles

Ratner, et. al.
28
Conclusions
  • Processing ? Structure ? Properties ? Application
  • Effects of structure and surfaces on properties
    of materials
  • A wide selection of materials available
  • Future work biocompatibility of each of these
    alloys

29
References
  • B. Ratner,A. Hoffman, F. Schoen and J. Lemons
    An Introduction to Materials in Medicine,
    Academic Press 1996
  • C. Clerc, M. Jedwab, D. Mayer, P. Thompson, J.
    Stinson, Assessment of Wrought ASTM F1058 Cobalt
    Alloy Properties for Permanent Surgical Implants,
    Wiley Interscience 1997
  • I. De Scheerder, J. Sohier, E. Verbeken,L. Froyen
    and J. Van Humbeeck, Mat.-wiss. u. Werkstofftech.
    32, 142-148 (2001)
  • David R. Haynes, Tania N. Crotti, Michael R.
    Haywood, CCC 0021-9304/00/020167-09 Wiley
    Interscience (2000)
  • Hallie E. Placko, Stanley A. Brown, Joe H. Payer,
    CCC 0021-9304/98/020292-08 Wiley Interscience
    (1998)

30
Questions
Write a Comment
User Comments (0)
About PowerShow.com