Title: Thermal and Thermoelectric Characterization of Nanostructures
1Thermal and Thermoelectric Characterization of
Nanostructures
- Li Shi, PhD
- Assistant Professor
- Department of Mechanical Engineering
- Center for Nano and Molecular Science and
Technology, - Texas Materials Institute
- The University of Texas at Austin
- Tutorial on Micro and Nano Scale Heat Transfer,
2003 IMECE
2Outline
- Scanning Thermal Microscopy of Nanoelectronics
- Thermoelectric Measurements of Nanostructures
-
3Silicon Nanoelectronics
- Heat dissipation influences speed and
reliability - Device scaling is limited by power dissipation
IBM Silicon-On-Insulator (SOI) Technology
4Carbon Nanoelectronics
TubeFET (McEuen et al., Berkeley)
Nanotube Logic (Avouris et al., IBM)
- Current density 109 A/cm2
- Ballistic charge transport
V
-
5Thermometry of Nanoelectronics
Techniques
Spatial Resolution
Infrared Thermometry
1-10 mm Laser Surface Reflectance
1 mm Raman Spectroscopy
1 mm Liquid Crystals
1 mm Near-Field
Optical Thermometry lt 100 nm
Scanning Thermal Microscopy (SThM) lt 100 nm
Diffraction limit for far-field optics
6Scanning Thermal Microscopy
Atomic Force Microscope (AFM) Thermal
Probe
Laser
Deflection Sensing
Cantilever
Temperature sensor
Sample
X-Y-Z Actuator
7Microfabricated Thermal Probes
Pt Line
Tip
Pt-Cr Junction
Laser Reflector
SiNx Cantilever
Cr Line
Shi, Kwon, Miner, Majumdar, J. MicroElectroMechani
cal Sys., 10, p. 370 (2001)
8Thermal Imaging of Nanotubes
Multiwall Carbon Nanotube
Topography
Topography
3 V
m
88
A
m
m
1
m
1
m
Spatial Resolution
V)
m
50 nm
Thermal signal (
Distance (nm)
Shi, Plyosunov, Bachtold, McEuen, Majumdar, Appl.
Phys. Lett., 77, p. 4295 (2000)
9Metallic Single Wall Nanotube
Topographic
Thermal
DTtip
A
B
C
D
2 K
0
1 mm
10Polymer-coated Nanotubes
Topography
Thermal
After coating
Before coating
-2 V, 4.4 mA
2 V, 7.8 mA
1 mm
GND
GND
- Asymmetric heating at the two contacts
The polymer melted at a 3V bias
11Future Challenge Temperature Mapping of
Nanotransistors
SOI Devices
SiGe Devices
- Low thermal conductivities of SiO2 and SiGe
- Interface thermal resistance
- Short (10-100 nm) channel effects (ballistic
transport, quantum transport) - Phonon bottle neck (optical-acoustic phonon
decay length gt channel length)
- Few thermal measurements are available to verify
simulation results
12Thermal Transport in Nanostructures
Carbon Nanotubes
Hot
Cold
p
- Long mean free path l
- Strong SP2 bonding high sound velocity v
- ? high thermal conductivity k Cvl/3 6000
W/m-K - Below 30 K, thermal conductance ? 4G0 ( 4 x
10-12T) W/m-K, linear T dependence (G0 Quantum
of thermal conductance)
Heat capacity
13Semiconductor Nanowires
Nano-patterned Si Nanotransistor (Berkeley
Device group)
VLS-grown Si Nanowires (P. Yang, Berkeley)
Gate
Drain
Source
Nanowire Channel
Hot Spots
- Increased phonon-boundary scattering
- Modified phonon dispersion
- ? Suppressed thermal conductivity
- Ref Chen and Shakouri, J. Heat Transfer 124, 242
Hot
p
Cold
14Efficient Peltier Cooling using Nanowires
Bi Nanowires
Thermoelectric figure of merit
Low k ? high COP
Dresselhaus et al., Phys. Rev. B. 62, 4610
15Thermal Measurements of Nanostructures
Suspended SiNx membrane
Long SiNx beams
Pt resistance thermometer
Kim, Shi, Majumdar, McEuen, Phys. Rev. Lett. 87,
215502 Shi, Li, Yu, Jang, Kim, Yao, Kim,
Majumdar, J. Heat Tran 125, 881
16Sample Preparation
- Dielectrophoretic trapping
Chip
SnO2 nanobelt
Nanotube bundle
Individual Nanotube
17Thermal Conductance Measurement
-
1
-
1
T
G
G
T
-
1
G
h
b
s
b
T
T
0
0
Q
2QL
Q
h
18Measurement Errors and Uncertainties
d
d 2
-- G-1Sample /G-1Contact decreases with d, and is
estimated to larger than 10 for measurements
reported here
19Carbon Nanotubes
CVD SWCN
- An individual nanotube has a high k 2000-11000
W/m-K at 300 K - The diameter and chirality of a CN may be probed
using Raman spectroscopy - k of a CN bundle is reduced by thermal
resistance at tube-tube junctions
20SnO2 Nanobelts
Phonon scattering rate
64 nm
64 nm
53 nm
39 nm
Umklapp Boundary Impurity
Collaboration N. Mingo, NASA Ames
tU-1 tU,bulk-1 ti-1 ti,bulk-1 tb-1 v/FL
v phonon group velocity FL effective
thickness
53 nm
53 nm, ti-1 10t-1i, bulk
Circles Measurements Lines Simulation using a
Full Dispersion Transmission Function approach
- Phonon-boundary scattering is the primary effect
determining the suppressed thermal conductivities
Shi, Hao, Yu, Mingo, Kong, Wang, submitted
21 Si Nanowires
Symbols Measurements Lines Simulation using a
modified Callaway method
- Phonon-boundary scattering is the primary effect
determining the suppressed thermal conductivities
except for the 22 nm sample, where boundary
scattering alone can not account for the
measurement results.
Li, Wu, Kim, Shi, Yang, Majumdar, Appl. Phys.
Lett. 83, 2934 (2003)
22Seebeck Coefficient
Th
S VTE / (Th Ts)
I
- Oxygen doped
- Quasilinear (metallic) behavior
- Phonon drag effect at low T
Ts
VTE
23Future ChallengeNanomanufacturing of Nanowire
Arrays as Efficient Peltier Devices
- Nano- imprint Pattering of Thermoelectric
Nanowire Arrays
10 nm Cr nanowire array
40 nm Cr nanowire array
- Test-bed Peltier devices for cooling IR sensors
24Summary
- Scanning Thermal Microscopy of Nanoelectronics
- -- Thermal imaging with 50 nm spatial resolution
- Thermoelectric (k, s, S) Measurements of
Nanostructures Using a Microfabricated Device - -- Super-high k of nanotubes
- -- Suppressed k of nanowires
25Acknowledgment
- Students
- Choongho Yu Jianhua Zhou Qing Hao Rehan
Farooqi Sanjoy Saha - Anastassios Marvrokefalos Anthony Hayes Carlos
Vallalobos - Collaborations
- UC Berkeley Arun Majumdar Deyu Li (now at
Vanderbilt) Philip Kim (now at Columbia) Paul
McEuen (now at Cornell) Adrian Bachtold (now at
Paris) Sergei Plyosunov - UT Austin C. K. Ken Shih Ho-Ki Lyeo Zhen
Yao Brian Korgel - GaTech Z. L. Wang
- NASA Natalio Mingo
- UCSC Ali Shakouri
- MIT Rajeev Ram Kevin Pipe
-
- Support
- NSF CTS (CAREER Instrumentation)
-