Reducing the Amount of Waste Activated Sludge - PowerPoint PPT Presentation

About This Presentation
Title:

Reducing the Amount of Waste Activated Sludge

Description:

Reducing the Amount of Waste Activated Sludge Sara Schmidt CE 479 December 6, 2006 Overview of Presentation: Background information Concerns regarding waste activated ... – PowerPoint PPT presentation

Number of Views:115
Avg rating:3.0/5.0
Slides: 28
Provided by: stud418
Learn more at: https://www.ndsu.edu
Category:

less

Transcript and Presenter's Notes

Title: Reducing the Amount of Waste Activated Sludge


1
Reducing the Amount of Waste Activated Sludge
  • Sara Schmidt
  • CE 479
  • December 6, 2006

2
Overview of Presentation
  • Background information
  • Concerns regarding waste activated sludge
  • What is MicroSludge?
  • Design comparisons of two digester systems

3
Background Information
  • Primary sludge produced from the primary
    settling of untreated wastewater
  • Waste activated sludge (WAS) excess sludge
    produced from activated sludge process
  • CMAD Conventional Mesophilic Anaerobic Digester
  • Mesophilic operating temperature of 25 - 40C

4
Background Information
  • Thermophilic operating temperature of 50-60C
  • MicroSludge Sludge pre-treatment that greatly
    enhances the performance of digesters

5
Concerns Regarding WAS
  • Risks to public health from sludge residuals
  • High capital and operating costs
  • Contribute to the publics growing concerns
    regarding odors
  • Negative environmental impacts

6
How much waste do people really produce?
  • A typical secondary wastewater treatment plant
    that serves 1 million people generates 25
    football fields (about three feet deep) of
    biosolids each year.

7
What is MicroSludge?
  • MicroSludge works by destroying microbial cell
    membranes and enabling anaerobic digesters to
    achieve significantly greater conversion of WAS
    to biogas.

www.microsludge.com
8
MicroSludge and Microbes
  • The image to the left shows intact microbes
    (magnified 20,000 times)
  • The image to the right shows the same microbes
    after the MicroSludge process

9
Benefits of MicroSludge
  • Major reduction in WAS residual biosolids (VSr)
  • Lowers retention time gt additional digester
    capacity
  • Increased amount of biogas production
  • Reduces operating, disposal, mixing costs

10
MicroSludge Location in a Wastewater Treatment
Plant
11
Design Parameters (Design 1)
  • Q 2Mgal/d 7440 m3/d
  • Dry volatile solids 0.16 kg/m3
  • Biodegradable COD removed 0.17 kg/m3
  • HRT (hydraulic retention time) 15 days
  • Efficiency of waste utilization, E overall VSr
    Mass fractionPS x VSrPS Mass fractionTWAS x
    VSrTWAS (0.65 x 0.68) (0.35 x 0.45) 0.60 E

12
Design Parameters
  • Y 0.08kg VSS/kg bCOD utilized
  • Kd 0.03d-1
  • Digester gas is 65 methane
  • Sludge contains 94 moisture, 6 solids 0.06
    Ps
  • Sludge has a specific gravity, Ssl 1.02

13
Calculations
  • Sludge volume
  • Ms (Ssl)(?w)(Ps)
  • (0.16 kg/m3)(7440 m3/d)
  • 1.02(103 kg/m3)(0.06)
  • 19.45 m3/d

14
Calculations
  • bCOD loading
  • (0.17 kg/m3)(7440 m3/d)
  • 1265 kg/d
  • HRT V/Q gt V Q HRT
  • (19.45 m3/d)(15 d)
  • V1 292 m3

15
Calculations
  • bCOD in inffluent, So
  • So 1265 kg/d
  • bCOD in effluent, S
  • S 1265(1 - E)
  • 1265(1 0.60) 506 kg/d

16
Calculations
  • Quantity of volatile solids produced per day, Px
  • Px Y(So S) 1 (kd)(HRT)
  • 0.08kg VSS/kg bCOD(759)
  • 1 (0.03d-1)(15 d)
  • Px(1) 41.88 kg/d

17
Calculations
  • Volume of methane produced per day _at_ 35C, VCH4
  • VCH4 (0.40)(So S) 1.42Px
  • (0.40m3/kg)759 kg/d
  • 1.42(41.88 kg/d)
  • VCH4 280 m3/d
  • Estimate total gas production
  • 280/0.65 430 m3/d

18
Design Parameters (Design 2)
  • Q 2Mgal/d 7440 m3/d
  • Dry volatile solids 0.16 kg/m3
  • Biodegradable COD removed 0.17 kg/m3
  • HRT (hydraulic retention time) 15 days
  • Efficiency of waste utilization, E overall VSr
    Mass fractionPS x VSrPS Mass fractionTWAS x
    VSrTWAS (0.65 x 0.68) (0.35 x 0.97) 0.78 E

19
Design Parameters
  • Y 0.08kg VSS/kg bCOD utilized
  • Kd 0.03d-1
  • Digester gas is 65 methane
  • Sludge contains 94 moisture, 6 solids 0.06
    Ps
  • Sludge has a specific gravity, Ssl 1.02

20
Calculations
  • Sludge volume
  • Ms (Ssl)(?w)(Ps)
  • (0.16 kg/m3)(7440 m3/d)
  • 1.02(103 kg/m3)(0.06)
  • 19.45 m3/d

21
Calculations
  • bCOD loading
  • (0.17 kg/m3)(7440 m3/d)
  • 1265 kg/d
  • HRT V/Q gt V Q HRT
  • (19.45 m3/d)(13 d)
  • V2 253 m3

22
Calculations
  • bCOD in inffluent, So
  • So 1265 kg/d
  • bCOD in effluent, S
  • S 1265(1 - E)
  • 1265(1 0.78) 278 kg/d

23
Calculations
  • Quantity of volatile solids produced per day, Px
  • Px Y(So S) 1 (kd)(HRT)
  • 0.08kg VSS/kg bCOD(987)
  • 1 (0.03d-1)(13 d)
  • Px(2) 56.79 kg/d

24
Calculations
  • Volume of methane produced per day _at_ 35C, VCH4
  • VCH4 (0.40)(So S) 1.42Px
  • (0.40m3/kg)987 kg/d
  • 1.42(56.79 kg/d)
  • VCH4 362 m3/d
  • Estimate total gas production
  • 362/0.65 557 m3/d

25
Comparison of two designs
  • Without using MicroSludge (Design 1)
  • V(1) 292 m3
  • Px(1) 41.88 kg/d
  • VCH4 280 m3/d
  • With using MicroSludge (Design 2)
  • V(2) 253 m3
  • Px(2) 56.79 kg/d
  • VCH4 362 m3/d

26
Cost Comparison
  • The major difference between these two designs
    are the volume needed for the digesters, volatile
    solids production, and methane gas production .
  • These differences are a major cost reductions for
    a wastewater treatment plant.

27
  • Questions???
Write a Comment
User Comments (0)
About PowerShow.com