Title: Learning Trajectories in Mathematics
1Learning Trajectories in Mathematics
- A Foundation for Standards, Curriculum,
Assessment, and Instruction
2Consortium for Policy Research in Education
(CPRE)
- Prepared by
- Phil Daro
- CCSS, member of lead writing team
- Frederic A. Mosher
- CPRE, Sr. Research Consultant
- Tom Corcoran
- CPRE, Co-director
- January 2011
3Learning Trajectories
- typical, predictable sequences of thinking that
emerge as students develop understanding of an
idea - modal descriptions of the development of student
thinking over shorter ranges of specific math
topics
4Learning Trajectories
- learning progressions which characterize paths
children seem to follow as they learn
mathematics. - Piagets Genetic Epistemology
- Vygotskys Zone of Proximal Development
5Development of Learning Trajectories vs. CCSS
- Learning Trajectories begin by defining a
starting point based on childrens entering
understanding and skills and then working forward - CCSS were begin at the level of college and
career ready standards backwards down through the
grades. This mapping is based on a logical
rendering of the set of desired outcomes needed
to define pathways or benchmarks to the standard.
6Learning Trajectories
- Are too complex and too conditional to serve as
standards. Still learning trajectories point to
the way to optimal learning sequences and warn
against the hazards that could lead to sequence
errors.
7Shape Composing Trajectory
Based on Doug Clements Julie Saramas in
Engaging Young Children In Mathematics (2004).
8Pre-Composer
- Free exploration with shapes
- Manipulation of shapes as individuals
- No combining of shapes to compose larger shapes
9Picture Composer
- Matches shapes
- Puts several shapes together to make one part of
a picture - Uses pick and discard strategy, rather than
intentional action - Notices some aspects of sides but not angles.
10Picture Maker
- Moves from using pick and discard strategy to
placing shapes intentionally. - Good alignment of sides and improving alignment
of angles
11Shape Composer
- Combines shapes to make new shapes with
anticipation. - Chooses shapes using angles as well as side
length. - Intentionality based.
12Substitution Composer
- Creates different ways to fill a frame
emphasizing substitution relationships.
13Learning Trajectory for Composing Geometric Shapes
- Pre-composer Free exploration with shapes
- Picture maker Makes one part of a picture (arms
on pattern block person but not legs) - 3. Shape composer More advanced. Chooses
shapes with certain angles and length of sides.
I know that will fit! - 4. Substitution composer yet more advanced.
Can take hexagon outline and fill it in different
ways to make a hexagon with pattern blocks.
14Trajectories can be used
- to develop instructional tasks that
- support student movement of understanding from
one level to another in specific ways - elicit and assess student understandings
15The blank puzzle illustrates the type of
structure that will challenge and help a child
move their skills along the trajectory
16Picture Maker Example
17Some Trajectories
- Present a continuum of tasks that are well
connected and build on each other in specific
ways over time - Present tasks that connect across topical areas
of school math - Offer detailed guidance to teachers in
understanding the capacities and misconceptions
of their students at different points in their
learning of a particular topic.
18Aim of Trajectories
- Are chronologically predictive
- In the sense of what students do (or are able to
with appropriate instruction) move successfully
from one level to the next - Yield positive results
- for example deepened conceptual understanding and
transferability of knowledge and skills as
determined by assessment - Have learning goals that are mathematically
valuable - align with broad agreement on what math students
ought to learn (as reflected in the CCSS)
19Trajectories Might Serve CCSS
- by defining more clearly the agreed upon goals
for which specific learning trajectories must
still be developed because they describe pivotal
concepts of school math
20Getting the sequence right is not guaranteed
- It involves testing hypothesized dependency of
one idea on another, with particular attention to
areas where cognitive dependencies are
potentially different from logical dependencies
as a mathematician sees them
21Learning Trajectory Researchers
- Are answering questions about when instruction
should follow a logical sequence of deduction
from precise definitions and when instruction
that builds on a more complex mixture of
cognitive factors and prior knowledge is more
effective
22Value of Learning Trajectories
- Offer a basis for identifying interim goals that
students should meet - Provide understandable points of reference for
designing assessments that point to where
students are, rather than merely their final
score. - Adaptive instruction thinking your sole goal is
to gather actionable information to inform
instruction and student learning, not to grade or
evaluate achievement - Could help teachers manage a wide variety of
individual learning paths by identifying a more
limited range of specific types of reasoning for
a given type of problem.
23Number Core Trajectory
- Seeing how many objects there are (cardinality)
- Knowing the number word list (one, two, )
- 1-1 correspondences when counting
- Written number symbols
24Multiplicative Reasoning and Rational Number
Reasoning
- Equi-partitioning
- Multiplication and division
- Fraction as number
- Ratio and Rate
- Similarity and Scaling
- Linear and Area measurement
- Decimals and Percents
25Multiplication Strategies
- Count all
- Additive calculation
- Count by
- Patterned based
- Learned products
- Hybrids of these strategies
26Spatial Thinking
- In, on, under, up and down
- Beside and between
- In front of, behind
- Left, right
27Measurement
- Compare sizes
- Connect number to length
- Measurement relating to length
- Measuring and understanding units
- Length-unit iteration
- Correct alignment with ruler
- Concept of the zero point