Overview - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

Overview

Description:

Overview Introduction to PLL Foundations of PLL Logic Programming, Bayesian Networks, Hidden Markov Models, Stochastic Grammars Frameworks of PLL – PowerPoint PPT presentation

Number of Views:54
Avg rating:3.0/5.0
Slides: 13
Provided by: Eps52
Category:

less

Transcript and Presenter's Notes

Title: Overview


1
Overview
  • Introduction to PLL
  • Foundations of PLL
  • Logic Programming, Bayesian Networks, Hidden
    Markov Models, Stochastic Grammars
  • Frameworks of PLL
  • Independent Choice Logic,Stochastic Logic
    Programs, PRISM,
  • Bayesian Logic Programs, Probabilistic Logic
    Programs,Probabilistic Relational Models
  • Logical Hidden Markov Models
  • Applications

2
(Propositional) LP Some Notations
burglary. earthquake. alarm - burglary,
earthquake. marycalls - alarm. johncalls -
alarm.
atom
head
Program
body
Herbrand Base (HB) all atoms in the program
burglary, earthquake, alarm, marycalls,
johncalls
Clauses IF burglary and earthquake are true THEN
alarm is true
3
Logic Programming (LP)
  • Two views on definite clausal theories
  • A model theoretic one
  • A proof theoretic one
  • Both views are connected

4
Model Theoretic Restrictions on Possible Worlds
  • Herbrand Interpretation
  • Truth assigments to all elements of HB
  • An interpretation is a model of a clause C ?
    If the body of C holds then the head holds, too.

true false
true false
burglary. earthquake. alarm - burglary,
earthquake. marycalls - alarm. johncalls -
alarm.
burglary
true false
earthquake
alarm
marycalls
johncalls
true false
true false
5
Proof Theoretic (Entailment)Restrictions on
Possible Derivations
  • A set of clauses can be used to prove that atoms
    are entailed by the set of clauses.

burglary. earthquake. alarm - burglary,
earthquake. marycalls - alarm. johncalls -
alarm.
- earthquake.
- johncalls.

- burglary, earthquake.
- alarm.
6
Bayesian Networks Pearl 91
illustration inspired by Kevin Murphy
Compact representation of joint probability
distributions
P(E,B,A,M,J)
  • Qualitative part
  • Directed acyclic graph
  • Nodes - random vars.
  • Edges - direct influence

7
Bayesian Networks Pearl 91
Model Theoretic
Burglary
Earthquake
burglary. earthquake. alarm - burglary,
earthquake. marycalls - alarm. johncalls -
alarm.
Alarm
MaryCalls
JohnCalls
P(j)
P(ja) P(ma) P(ae,b) P(e) P(b)
Traditional Approaches
8
(Hidden) Markov ModelsRabiner 89
Statistical models for sequences, i.e.
observations over time T0,1,2,3,...
Observations t,
h
, t,
t, ...
Hidden States c1, c2, c1,c2, ...
Not observed
9
(Hidden) Markov Models
Rabiner 89
tail
tail
head



P11
P12
P13
P10
coin1
coin1
coin1
coin1
P1

P2
...
Prior
P3
coin2
coin2
coin2
coin2
P4 ...
P20
P
0.50.7 head
0.50.3 tail
coin2
coin1
0.50.5 head
0.50.3 tail
0.50.5 tail
0.50.7 head
Proof Theoretic
0.50.5 tail
0.50.5 head
10
Stochastic Grammars
Manning, Schütze 99
Weighted Rewrite Rules
Upgrade HMMs (regular languages) to more complex
languages such as context-free languages.
1.0 S ? NP, VP 1/3 NP ? i 1/3 NP ? Det,
N 1/3 NP ? NP, PP 1.0 Det ? the 0.5 N
? man 0.5 N ? telescope 0.5 VP ? V, NP
0.5 VP ? VP, PP 1.0 PP ? P, NP 1.0 V ?
saw 1.0 P ? with
Proof Theoretic
S
1.0
1/3
0.5
1.0 ...
0.5
0.00231
11
Upgrading to First-Order Logic
father(rex,fred). mother(ann,fred).
father(brian,doro). mother(utta, doro).
father(fred,henry). mother(doro,henry). pc(rex
,a). mc(rex,a). pc(ann,a). mc(ann,b). ...
The maternal information mc/2 depends on the
maternal and paternal pc/2 information of the
mother mother/2 mchrom(fred,a).
mchrom(fred,b),... or better mc(P,a) -
mother(M,P), pc(M,a), mc(M,a). mc(P,a) -
mother(M,P), pc(M,a), mc(M,b). mc(P,b) -
mother(M,P), pc(M,a), mc(M,b). ...
12
Upgrading - continued
Substitution Maps variables to terms M /
ann mc(P,a) - mother(ann,P),pc(ann,a),mc(ann,
a). Herbrand base set of ground atoms (no
variables) mc(fred,fred),mc(rex,fred),
Interpretations can be infinite
! nat(0),nat(succ(0)), nat(succ(succ(0))), ...
13
Forward Chaining
father(rex,fred). mother(ann,fred).
father(brian,doro). mother(utta, doro).
father(fred,henry). mother(doro,henry). pc(rex
,a). mc(rex,a). pc(ann,a). mc(ann,b). ...
mc(P,a) - mother(M,P), pc(M,a), mc(M,a). mc(P,a)
- mother(M,P), pc(M,a), mc(M,b).
Set of derivable ground atoms least Herbrand
model
...
14
Backward Chaining
father(rex,fred). mother(ann,fred).
father(brian,doro). mother(utta, doro).
father(fred,henry). mother(doro,henry). pc(rex
,a). mc(rex,a). pc(ann,a). mc(ann,b). ...
mc(P,a) - mother(M,P), pc(M,a), mc(M,a). mc(P,a)
- mother(M,P), pc(M,a), mc(M,b).
mc(fred,a)
Write a Comment
User Comments (0)
About PowerShow.com