????? Computer Vision - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

????? Computer Vision

Description:

Computer Vision 2005 5 16 Outline Web sites FTP sources Tools (Intel OpenCV, IPL, ) Demo ... – PowerPoint PPT presentation

Number of Views:199
Avg rating:3.0/5.0
Slides: 27
Provided by: AIHai
Category:

less

Transcript and Presenter's Notes

Title: ????? Computer Vision


1
????? Computer Vision
  • ???
  • 2011?3?

2
Outline
  • ????,????,????
  • ???????????????????
  • Web sites
  • FTP sources
  • Tools (Intel OpenCV, IPL,)
  • Demo
  • ????????????
  • Overview
  • Introduction recommendedForsyths introduction
    to CV, other related

3
????,??,????
  • ??
  • ?????????????,??????,??????????
  • ??
  • ?????????,?????????(ppt,pdf,codes,etc.),??????????
    ????????
  • ????
  • ???????????,??????????????????,?????????,???????

4
???????
  • ???????????????????
  • ??????????
  • ????????????
  • ??????????
  • ???????????
  • ???????????????????
  • ?????????????????
  • ??????????,??????

5
???????????
  • ??????,CV?????,????,???????
  • ????(????)
  • ????OpenCV??,
  • ????Mathlab??,
  • ??????????
  • ????
  • ???????,??????,
  • ????????,
  • ???????,????,????,

6
??
  • ????Szeliski, Richard, Computer Vision
    Algorithms and Applications, Springer, Oct., 2010
  • ????????,??? ?, ??????????,2011?
    x?(??2011????)???????
  • ?????DA Forsyth and J. Ponce, Computer Vision A
    Modern Approach, Prentice Hall. 1st edition
    (August 14, 2002) ???????
  • ????????,?? ?, ????????????,2004?6????????

7
???
  • ???,???,?????,?????,??,1998?
  • R. Jain, R. Kasturi and B. G. Schunck, Machine
    Vision, McGraw-Hill companies, Inc. ???????,
    2003.8?
  • L.G. Shapiro and G.C. Stockman, Computer Vision,
    Prentice Hall Inc, 2001.
  • M. Sonka, V. Hlavac, and R. Boyle, Image
    processing, analysis, and machine vision ,
    Chapman Hall Computing, London, 3rd Edition,
    THOMSON Learning, 2008.
  • M. Sonka, V. Hlavac, and R. Boyle, (??????? ??),
    ????????????(?3?),???????, 2011.1?
  • ???,???? (?2?),???????, 2007.5

8
???(?????????)
  • Christopher M. Bishop, Pattern Recognition and
    Machine Learning, Springer, 2006.8
  • R.O. Duda,P.E. Hart and D.G. Stork, Pattern
    Classification,???????,2003.6?
  • R.O. Duda, P.E. Hart and D.G. Stork (???,?????) ,
    ????,???????,2003.9?
  • S. Theodoridis and K. Koutroumbas, Pattern
    Recognition, ???????,2003.9?
  • ???,??? ?,????,???????,2000.

9
???(????)
  1. R.C. Gonzalez, R.E. Woods,Digital Image
    Processing, ??? (??) ??????? Pearson Education,
    2010.
  2. R.C. Gonzalez, R.E. Woods, (?????????),??????,??
    ?,??????? Prentice Hall, 2003.
  3. ???,???? (?2?),???????, 2007.5
  4. ??,???????Visual C??,?????????,2002.12
  5. ???,??Visual C????,???????,2000.1

10
????????????
  • ????
  • ????
  • ????
  • ???? 10
  • ???? 60
  • ???? 30

11
Web sites (1)---Search Engine
  • CVPapers - Computer Vision Resource
  • http//www.cvpapers.com/
  • Google search computer vision
  • Computer vision homepage
  • Computer vision online
  • Computer vision source codes
  • Computer vision test data
  • Computer vision .
  • Paper search http//www.researchindex.com

12
Web sites (2)---Courses
  • ????? Slides and lectures of Szeliskis books
    supplementary material
  • UW455 Undergraduate Computer Vision,
    http//www.cs.washington.edu/education/courses/455
    /.
  • UW576 Graduate Computer Vision,
    http//www.cs.washington.edu/education/courses/576
    /.
  • Stanford CS233B Introduction to Computer Vision,
    http//vision.stanford.edu/teaching/cs223b/.
  • MIT 6.869 Advances in Computer Vision,
    http//people.csail.mit.edu/torralba/courses/6869/
    6.869.computervision.htm.
  • Berkeley CS 280 Computer Vision,
    http//www.eecs.berkeley.edu/trevor/CS280.html.
  • UNC COMP 776 Computer Vision, http//www.cs.unc.e
    du/lazebnik/spring09/.
  • Middlebury CS 453 Computer Vision,
    http//www.cs.middlebury.edu/schar/courses/cs453-s
    10/.

13
Web sites (3)---Course Ware
  • ??????????????
  • Computer Vision Education Digital Library
    Collection
  • http//cved.org/
  • Computer Vision
  • http//www.cs.washington.edu/education/courses/576
    /CurrentQtr/
  • Introduction to Computer Vision
  • http//www.cse.psu.edu/cg486/
  • Learning and Inference in Vision
  • www.ai.mit.educourses6.899

14
Web sites (4)--- Codes, tutorial,etc.
  • KLT An Implementation of the Kanade-Lucas-Tomasi
    Feature Tracker
  • http//www.ces.clemson.edu/stb/klt/installation.h
    tml
  • Epipolar geometry, essential matrix, etc online
    tutorial
  • http//homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_C
    OPIES/EPSRC_SSAZ/node18.html
  • RANSAC
  • http//homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_C
    OPIES/FISHER/RANSAC/
  • .

15
Tools (1)
  • Intel OpenCV (Open source Computer Vision
    library)
  • This library allows high level functions for
    computer vision and image processing.
  • OpenCV offers many high-level data types such as
    sets, trees, graphs, matrices. . .
  • OpenCV is open source to run on many computer
    platforms.
  • High level functions such as
  • Camera calibration (Zhang Zhengyous method)
  • Face detection (a variation of Viola-Joness
    detector)
  • Motion analysis and object tracking
  • Optical flow
  • Lucas-Kanade algorithm
  • Estimators
  • Kalman
  • Condensation

16
Tools (2)
  • Intel IPP (Integrated Performance Primitives)
  • It is a signal processing, image processing and
    matrix calculation library developed by Intel
    Corporation.
  • IPP offers to programmers a wide range of
    low-level functions which are optimized when used
    on an Intel processor (from Pentium to Itanium).
  • It is really a good library for signal, image,
    video and sound processing with very good
    performances due to optimized instructions.
  • IPP is not a free library, it comes under an
    Intel licensing policy which is explained at
    Intel website

17
demo
  • Face detection
  • Object contour tracking
  • Motion object detection and tracking
  • ASM/AAM shape modeling
  • Perceptual interface smart room
  • Visual surveillance
  • Robotics vision
  • 3D modeling, face animation

18
????????????
??????
?????????
???
????
????
????
?????
????
??????
?????
????
????????????
???????(???????)
????????
????
?????
????
????
19
Overview (1)
  • ???????????
  • ?????
  • ????(pinhole model/perspective transformation)
  • ???? (epipolar geometry fundamental
    matrix/essential matrix)
  • ???????(multi-view geometry)
  • ????
  • ?????(correspondence problem)
  • ??????
  • ????????(minimal projective reconstruction)
  • 2-view, 7 points in correspondence (Faugeras)
  • 3-view, 6 points in correspondence (Quan Long)
  • 3-view, 8 points with one missing in one of the
    three view. (Quan Long)
  • ????(Geometry reconstruction)
  • ????(stereo vision)
  • Shape from X (shading/motion/texture/contour/focus
    /de-focus/.)

20
Overview (2)
  • ???????????
  • ?????????
  • ??????????????????.
  • ?? shading??? shadow
  • ??/?? light/color
  • ???,???radiometry,
  • ??????
  • ?????(????)Lambertian surface
  • BDRF (bi-directional reflectance distribution
    fucntion)

21
Overview (3)
  • ????????????
  • ?????????
  • ???????
  • ????
  • ??????????????
  • ?????? (??)
  • ??????

22
Overview (4)
  • ????????????
  • ??????
  • ?????/????/??
  • ?????/??/???????????? affine/perspective
    structure from motion
  • ??????
  • ????/?????????? clustering for segmentation,
    fitting line
  • ???????????/??
  • ?? tracking
  • ??????
  • ??
  • ????/?????? pattern classification/aspect graph
    recognition
  • ??
  • ????(range data)/??????/???????

23
Overview (5)
  • ??????????
  • ?????????
  • ?????????
  • ?????????
  • ????
  • ??????????????????
  • Signal processing approach FFT, filtering,
    wavelets,
  • Subspace approach PCA, LDA, CCA, ICA,
  • Bayesian inference approach EM,
    Condensation/SIS/, MCMC, .
  • Machine learning approach SVM/RVM/Kernel
    machine, Boosting/Adaboost, NN/Regression,
  • HMM, BN/DBN,
  • Gibbs, MRF,

24
Overview (6)
  • ??????????
  • ???????????,??????????
  • High dimensional image/video data lie in a very
    low dimensional manifold.
  • ???????
  • ????????
  • ????

25
Introduction Recommended
  • Forsyths introduction to CV
  • Ullmans introduction to Computer and Human
    Vision (part 1)
  • Ullmans introduction to Computer and Human
    Vision (part 2)
  • Seitzs conclude on CV

26
CV ??
  • ?? IJCV, PAMI, CVIU, PR, IVC?
  • ?? ICCV, CVPR, ECCV, FG, ACCV, ICPR, ICIP ?
Write a Comment
User Comments (0)
About PowerShow.com