Title: Astronomy at 100 MHz
1Astronomy at 100 MHz HI-z vs ZZ Top
2(No Transcript)
3(No Transcript)
4(No Transcript)
5Pre-WMAP
6.2
alter
6Gnedins simulation of Reionization
http//casa.colorado.edu/gnedin/GALLERY/
log(mean intensity of ionizing flux)
log(Neutral fraction)
log(density)
log T
7MAP
8MAP Result
Z 17 4
6.2
alter
???
Rules out WDM
9 .. ionized
10Time scales for Recombination
t n /R
recomb
e
11Time scales for Recombination in IGM
t n /R
recomb
e
12Time scales for Recombination
t n /R
recomb
e
13 14 15R. Cen 2 Reionisations
Z 20 15 10 8
7 6
cold HI
warm HI
HII
HII
Pop III stars _at_ 500 Solar mass
16LOFAR and SKA
distributed star formation
Quasar
10 arcmin
17(No Transcript)
18(No Transcript)
19Foregrounds - Galactic synchrotron
- Discrete sources -
R.F.I.
log TB
TB f-2.6
180 K
180 MHz
log Frequency
2074 MHz x 6
21WMAP result
22(No Transcript)
23Galactic / CMB separation
24TE Spectrum at low l
25The Z20 Expt
JR, FB, et al
26Barnbaum Bradley 1998
FM band in NRQZ Green Bank, WV
27A. Chippendale 3 feb 2003
Mileura Station min/median/max10 hrs _at_ 1 min
intervalsAzimuth 30 deg3kHz bandpass average
28RFI Subtraction with a reference horn
- origins in Int-Mit group at CSIRO ATNF
- illustrations from Parkes Telescope (Jon Bell et
al.)
29gAS
g1I
Rx
Cross Correlation
30R F I
31Reference Antenna
I(t) S ha(t) io(t-ta)
32Reference Antenna
I
I(f) (S Ga(f) e-i2p taf ) Io(f)
G(f) Io(f)
33Cross correlation single polarization feed with
2 reference signals
1. Pol A
G1 G4 Io2
3. Ref 1
G3 G4 Io2
4. Ref 2
34Cross correlation single polarization feed with
2 reference signals
1. Pol A
G1 G4 Io2
C14
3. Ref 1
C34
G3 G4 Io2
4. Ref 2
G1
G1 G4 Io2
G3
G3 G4 Io2
35Practical Application Auto-Correlation
Spectrometer
Power Spectrum P(f)
S
gA2S2
g12 I2
A/C spectrometer
I
g12 I2
36Cross correlation single polarization feed with
2 reference signals
1. Pol A
G1 G3 Io2
C13
G1 G4 Io2
C14
3. Ref 1
C34
G3 G4 Io2
4. Ref 2
C13(f) C14(f) C34(f)
A/C Spectrum Contamination
g12 I2
37Cross correlation dual polarization feed with 2
reference signals
1. Pol A
C13
G1 G3 Io2
2. Pol B
C14
G1 G4 Io2
C23
G2 G3 Io2
C24
G2 G4 Io2
3. Ref 1
C34
G3 G4 Io2
4. Ref 2
38Raw Dynamic Spectra
Time
39Pol A
Pol B
frequency
Canceled Dynamic Spectra
Time
Non-Toxic to celestial signals
40Spectral Domain Contamination the VOLTAGE
spectrum
Estimate g1(f) I(f) X13(f) g3(f) I(f)
Time Domain Contamination
Effectively FIR filter coefficients
41FIR Coefficients
Delay 0.1ms steps
Time 0.1 sec steps
42Pol A
Pol B
using Ref. 3
43(No Transcript)
44Dynamic Pulsar Spectra
Pol. B
Pol. A
Phase
Frequency
45Cancellation Applied
Dynamic Pulsar Spectra
Pol. B
Pol. A
Phase
Frequency
46Time Domain Contamination
P(t) g12 I(t) 2 g1I(t) 3
g1I(t) 4
47Time Domain Contamination
PI(t) g12 I(t) 2 g1I(t) 3
g1I(t) 4
( x13(t) N3 ) ( x14(t) N4 )
48(No Transcript)
49Passband Normalization Applied
Dynamic Pulsar Spectra
Pol. B
Pol. A
Phase
Frequency
50(No Transcript)
51Total Power Spectra
Ref B
Ref A
52Ref B
Raw Cross- correlation Spectra
53Ref B
Corrected Cross- correlation Spectra
54Steve Ellingson 17 Dec 1999
A Variation on the Ekers-Sault Correlation
Idea
Cross- correlation matrix
Eigen decomposition
Partition
55Twelve Eigenvalue Spectra
Frequency Channels
56Twelve Eigenvalue Spectra
Frequency Channels
57Eigenvector Spectra for one channel
(amplitudes of complex coefficients)
Frequency Channels
58Conclusions
- complications of multi-path are contained in
- complex gains G(f)
- adaptive filtering with correlation functions
- preserves phase information.
- equivalent to subtraction of the
voltage waveform
59Applied RFI ID and subtraction
1. New 50cm Rx
2. 74 MHz
60ZZ Top
- when yer movin down the road,
- in yer V-8 foad,
- a shine on yer boots,
- and yer sideburns low