Hilbert-Huang Transform(HHT) - PowerPoint PPT Presentation

About This Presentation
Title:

Hilbert-Huang Transform(HHT)

Description:

... Process Technique for Empirical Mode Decomposition , IEEE International Geoscience and Remote Sensing Symposium IGARSS '04, vol. 6, 2004, pp. 4258-4261. [12] Z. – PowerPoint PPT presentation

Number of Views:59
Avg rating:3.0/5.0
Slides: 38
Provided by: djjEeNtu6
Category:

less

Transcript and Presenter's Notes

Title: Hilbert-Huang Transform(HHT)


1
Hilbert-Huang Transform(HHT)
  • Presenter Yu-Hao Chen
  • IDR98943021
  • 2010/05/07

2
Outline
  • Author
  • Motivation
  • Hilbert Transform
  • Instantaneous frequency(IF)
  • Flow chart
  • Theory
  • Intrinsic Mode Function(IMF)
  • Empirical Mode Decomposition(EMD)
  • TimeFrequency analysis
  • Application
  • Problem
  • Summary

3
Norden E. Huang (??)
  • Career and Experience
  • Research Scientist, NASA (1975-2006)
  • National Academy of Engineering (2000)
  • Academia Sinica (2006)
  • NASA Goddard Space Flight Center (2000-2006)
  • Research Center for Adaptive Data Analysis (2006)
  • Research topic
  • Engineering Sciences
  • Applied Mathematical Sciences
  • Applied Physical Sciences

4
Motivation
  • To deal with nonlinear and non-stationary signal
  • To get Instantaneous frequency(IF)

5
5
Hilbert Transform
  • The Hilbert transform can be thought of as the
    convolution of s(t) with the function h(t)
    1/(pt)
  • Derive the analytic representation of a signal

6
Instantaneous Frequency(IF)
  • s(t) ß cos(t)
  • (1) ß 0 IF is the constant
  • (2) 0 lt ß lt 1 IF has been oscillating
  • (3) ß gt 1 IF has been negative

3
3
3
7
Flow Chart
4
1
8
Intrinsic Mode Function(IMF)
  • The number of extrema and zero-crossings must
    either be equal or differ at most by one.
  • The mean value of the upper envelope and the
    lower envelope is zero.

5
9
Empirical Mode Decomposition(EMD)(1/8)
1
10
Empirical Mode Decomposition(EMD)(2/8)
1
11
Empirical Mode Decomposition(EMD)(3/8)
1
12
Empirical Mode Decomposition(EMD)(4/8)
1
13
Empirical Mode Decomposition(EMD)(5/8)
1
14
Empirical Mode Decomposition(EMD)(6/8)
  • SD lt 0.1 gt IMF

4
1
15
Empirical Mode Decomposition(EMD)(7/8)
1
Sifting Process
16
Empirical Mode Decomposition(EMD)(8/8)

4
17
Example
5
18
TimeFrequency Analysis
  • Fast Fourier Transform (FFT)
  • Wavelet Transform
  • Hilbert-Huang Transform (HHT)

19
Application
  • Geoscience
  • Biomedical applications
  • Multimodal Pressure Flow (MMPF)
  • Financial applications
  • Image processing
  • Audio processing
  • Structural health monitoring

20
Geoscience
  • Length of day

5
21
Biomedical(1/2)
  • Multimodal Pressure
  • Flow (MMPF)

5
22
Biomedical(2/2)
  • Doppler blood flow signal analysis 14
  • Detection and estimation of Doppler shift 15

23
Image Processing
  • Edge detection 10
  • Image denoise 11
  • Image fusion 12

24
Problems of HHT
  • P1 Stopping criterion
  • P2 End effect problem
  • Hilbert Transform
  • EMD
  • P3 Mode mixing problem
  • Ensemble EMD (EEMD)
  • Post-processing of EEMD
  • P4 Speed of computing
  • P5 Spline

25
P1 Stopping Criterion
  • Standard deviation(SD)
  • SD 0.20.3
  • S number criterion
  • 3 S 5
  • Three parameter method(?1,?2, a)
  • Mode amplitude
  • Evaluation function
  • s(t)lt ?1 in (1- a)
  • s(t)lt ?2 in a
  • a ? 0.05, ?1 ?0.05,
  • ?2 ? 10?1

1
2
3
26
P2 End Effect Problem
  • End effect of Hilbert Transform

1
  • End effect of EMD

27
P2 Solutions for End Effects
  • End effect of Hilbert Transform
  • Adding characteristics waves
  • End effect of EMD
  • Extension with linear spline fittings near the
    boundaries

6
28
P3 Mode Mixing
  • Ensemble EMD (EEMD)
  • Post-processing of EEMD

1
29
P3 Ensemble EMD (EEMD)
  • Noise n1-nm are identical independent
    distributed.
  • Ensemble EMD indeed enables the signals of
  • similar scale collated together.
  • The ensemble EMD results might not be IMFs.

8
7
30
P3 Post-Processing of EEMD
  • Post-processing EEMD can get real IMFs.

31
P4 Speed of Computing
  • The processing time of HHT is dependent on
    complexity of the data and criterions of the
    algorithm
  • HHT data processing system(HHT-DPS)
  • Implementation of HHT based on DSP

13
32
P5 Spline
  • Cubic B-Spline

5
33
Conclusion
  • The definition of an IMF guarantees a
    well-behaved Hilbert transform of the IMF
  • IMF represents intrinsic signature of physics
    behind the data
  • Although there are still many problems in HHT,HHT
    has lots of applications in all aspects

34
Reference(1/3)
  • 1 N. E. Huang, Z. Shen, etc. The empirical
    mode deomposition and the Hilbert spectrum for
    nonlinear and non-stationary time series
    analysis, Proceedings of the Royal Society, vol.
    454, no. 1971, pp. 903995, March 8 1998.
  • 2 N. E. Huang, M. C. Wu, S. R. Long, S. S. P.
    Shen, W. Qu, P. Gloersen and K. L. Fan, A
    Confidence Limit for the Empirical Mode
    Decomposition and Hilbert Spectrum Analysis,
    Proc. R. Soc. Lond. A, vol. 459, 2003, pp. 2317-
    2345.
  • 3 G. Rilling, P. Flandrin and P. Gonçalvés, On
    Empirical Mode Decomposition and Its Algorithms,
    IEEE-EURASIP Work- shop on Nonlinear Signal and
    Image Processing NSIP-03, Grado, Italy, 8-11 Jun.
    2003.
  • 4 J. Cheng, D. Yu and Y. Yang, Research on the
    Intrinsic Mode Function (IMF) Criterion in EMD
    Method, Mechanical Systems and Signal
    Processing, vol. 20, 2006, pp. 817-824.
  • 5 Z. Xu, B. Huang and S. Xu, Exact Location of
    Extrema for Empirical Mode Decomposition,
    Electronics Letters, vol. 44, no. 8, 10 Apr.
    2008, pp. 551-552.
  • 6 ?????? ???????? (RCADA)
  • Available http//rcada.ncu.edu.tw/intro
    .html

35
Reference(2/3)
  • 7 Z. WU and N. E. HUANG , ENSEMBLE EMPIRICAL
    MODE DECOMPOSITIONA NOISE-ASSISTED DATA ANALYSIS
    METHOD, Advances in Adaptive Data Analysis, Vol.
    1, No. 1 pp 141,2009
  • 8 Master thesis Applications of Ensemble
    Empirical Mode Decomposition (EEMD) and
    Auto-Regressive (AR) Model for Diagnosing
    Looseness Faults of Rotating Machinery
  • 9 Y. Deng, W. Wang, C. Qian, Z. Wang and D.
    Dai, Boundary-Processing- Technique in EMD
    Method and Hilbert Transform, Chinese Science
    Bulletin, vol. 46, no. 1, Jan. 2001, pp. 954-960.
  • 10 J. Zhao and D. Huang, Mirror Extending and
    Circular Spline Function for Empirical Mode
    Decomposition Method, Journal of Zhejiang
    University, Science, vol. 2, no.3, July-Sep.
    2001, pp. 247-252.
  • 11 K. Zeng and M. He, A simple Boundary
    Process Technique for Empirical Mode
    Decomposition, IEEE International Geoscience and
    Remote Sensing Symposium IGARSS '04, vol. 6,
    2004, pp. 4258-4261.
  • 12 Z. Zhao and Y. Wang, A New Method for
    Processing End Effect in Empirical Mode
    Decomposition, IEEE International Conference on
    Circuits and Systems for Communications ICCSC
    2007, 2007, pp. 841-845.

36
Reference(3/3)
  • 13 H. Li and Z. Li, etc. , Implementation of
    Hilbert-Huang Transform (HHT)
  • Based on DSP, International
    Conference on Signal Processing, vol.1, 2004
  • 14 Z. Zhidong and W. Yang ,A New Method for
    Processing End Effect In
  • Empirical Mode Decomposition,
    International Conference on
  • Communications, Circuits and
    Systems, ICCCAS , pp 841-845, July 2007

37
Thank you
Write a Comment
User Comments (0)
About PowerShow.com