Title: Crystal Structure
1Crystal Structure
2Crystal Properties of Semiconductors
3(No Transcript)
4 d
f
i
c
a
t
i
o
n
o
f
a
p
o
l
y
c
r
y
s
t
a
l
l
i
n
e
s
o
l
i
d
f
r
o
m
t
h
e
m
e
l
t
.
(
a
)
N
u
c
l
e
a
t
i
o
n
.
(
b
)
r
o
w
h
.
(
c
)
T
h
e
s
o
l
i
d
i
f
i
e
d
p
o
l
y
c
r
y
s
t
a
l
l
i
n
e
s
o
l
i
d
.
F
o
r
S
c
s
i
m
p
l
i
i
t
y
,
c
u
b
e
s
r
e
p
r
e
s
e
n
t
a
t
o
m
s
.
5Crystal Properties of Solid
G
r
a
i
n
1
G
r
a
i
n
2
G
r
a
i
n
B
o
u
n
d
a
r
y
(a)
(
b
)
G
r
a
i
n
b
o
u
n
d
a
r
i
e
s
c
a
u
s
e
s
c
a
t
t
e
r
i
n
g
o
f
t
h
e
e
l
e
c
t
r
o
n
a
n
d
t
h
e
r
e
f
o
i
a
m
e
t
e
r
.
6Crystal Properties of Solid
F
o
r
e
i
g
n
i
m
p
u
r
i
t
y
S
e
l
f
-
i
n
t
e
r
s
t
i
t
i
a
l
t
y
p
e
a
t
o
m
V
o
i
d
,
v
a
c
a
n
c
y
b
o
n
d
G
r
a
i
n
b
o
u
n
d
a
r
y
B
r
o
k
e
n
b
o
n
d
(
d
a
n
g
l
i
n
g
b
o
n
d
)
T
h
e
g
r
a
i
n
b
o
u
n
d
a
r
i
e
s
h
a
v
e
b
r
o
k
e
n
b
o
n
d
s
,
v
o
i
d
s
,
v
a
c
a
n
c
i
e
s
,
s
t
r
a
i
n
e
d
b
o
n
d
s
a
n
d
"
i
n
t
e
r
s
t
i
t
i
a
l
"
t
y
p
e
a
t
o
m
s
.
T
h
e
s
t
r
u
c
t
u
r
e
o
f
t
h
e
g
r
a
i
n
b
o
u
n
d
a
r
y
i
s
d
i
s
o
r
d
e
r
e
d
a
n
d
t
h
e
a
t
o
m
s
i
n
t
h
e
g
r
a
i
n
b
o
u
n
d
a
r
i
e
s
h
a
v
e
h
i
g
h
e
r
e
n
e
r
g
i
e
s
t
h
a
n
t
h
o
s
e
w
i
t
h
i
n
t
h
e
g
r
a
i
n
s
.
7Examples of Crystals
Snow
Quartz
Copper oxide
Salt (NaCl) crystal
Gold (Au) crystals at 1000 C
8Examples of Crystals
Salt (NaCl) crystal
9Examples of Crystals
Carbon Nanotube
Carbon Nanofiber
Fullerene
TEM image of Carbon Nanotube
10Examples of Crystals
Single crystal Diamonds.
Single crystal Silicon.
11Atomic Resolution Images of Solid Surfaces
- STM (Scanning Tunneling Microscope) images of
solid surface
Silicon (Si) surface
Iron silicide surface
12Atomic Resolution Images of Solid Surfaces
- 3D-STM (Scanning Tunneling Microscope) images
of solid surface
Silicon (Si) surface
Hydrogen bonds on a Silicon surface.
13Atomic Resolution Images of Solid Surfaces
- TEM (Tunneling Electron Microscope) images of
solid surface
High resolution image of a quasiperiodical grain
boundary in gold.
14Crystal Structures and Definitions
- Lattice The periodic arrangement of the atoms.
- Unit Cell
- Representative of the entire lattice and is
regularly repeated throughout the crystal. - Primitive Cell
- Smallest unit cell which can be repeated to
form the lattices.
a
a/2
Primitive Cell
Unit Cell
Each crystal built up of a repetitive stacking of
unit cells each identical in size,
shape, and orientation with every other one.
15Crystal Structures and Definitions
- Coordinates of position in the unit cell
- x, y, z expressed in terms of the unit cell
edges. -
-
- Example
- reached by moving along the axis a distance
of - 3x the length of the vector , the
parallel to , a distance 2? , - and finally parallel to , a
distance equal to the length of .
16Crystal Lattice Group
Length and Angle
Triclinic a?b?c ??????90? K2CrO7 Monoclinic a?
b?c ??90??? ?-S, CaSO4?2H2O Orthorhombic
a?b?c ???90? ?-S, Ga,
Fe3C Tetragonal ab?c ???90? ?-Sn,
TiO2 Cubic abc ???90? Cu, Ag, Zn,
NaCl Hexagonal a1a2a3?c ??90?, ?120?
Zn, Cd Rhombohedral abc ????90? As,
Sb, Bi
17Crystal (Bravais) Lattice Group (I)
Monoclinic a?b?c, ??90 ??90 Monoclinic a?b?c, ??90 ??90
Orthorhombica?b?c, ???90 Orthorhombic a?b?c, ???90 Orthorhombic a?b?c, ???90
Triclinic a?b?c, ??????90
18Crystal (Bravais) Lattice Group (II)
Orthorhombic a?b?c, ???90 Hexagonal a1a2a3?c, ??90 ?120 Rhombohedral abc, ????90
19Crystal (Bravais) Lattice Group (III)
Tetragonal ab?c, ???90 Tetragonal ab?c, ???90 Cubicabc, ???90
Cubic abc, ???90 Cubic abc, ???90
20U
N
I
T
C
E
L
L
G
E
O
M
E
T
R
Y
C
U
B
I
C
S
Y
S
T
E
M
a
b
g
a
b
c
9
0
M
a
H
e
x
a
g
o
n
a
l
m
b
o
h
e
d
r
a
l
F
l
u
o
r
i
d
e
B
a
s
e
c
e
n
t
e
r
e
d
T
r
i
c
l
i
n
i
c
m
o
n
o
c
l
i
n
i
c
21Miller Convention Summary
Convention Interpretation (hkl) Crystal
Plane hkl Equivalent Planes
hkl Crystal Direction lthklgt Equivalent
Directions
? plane 111 (111) (-111) (1-11) (11-1)
? direction lt111gt 111 -111 1-11 11-1
22Crystal Planes
- Identification of a plan in a crystal
z
z
i
n
t
e
r
c
e
p
t
a
t
b
Miller Indices (hkl)
1
1
1
(
210)
1
1
c
/
2
a
x
/
i
n
t
e
r
c
e
p
t
a
t
2
y
a
y
b
i
n
t
e
r
c
e
p
t
a
t
U
n
i
t
c
e
l
l
x
23Crystal Planes
- Identification of a plane and direction in a
crystal
z
121
z
P
o
c
x
y
y
o
o
a
b
24Crystal Planes
25Miller Index
26Miller Index
27Crystal Planes in the Cubic Lattice
- Various planes in cubic lattice
y
28Crystal Planes
-
- The value of d, the distance between
adjacent planes in the set - (hkl), may be found from the following
equations - Cubic
- Tetragonal
?
29Crystal Planes
- Each set of planes has a specific interplanar
distance and will give rise to a characteristic
angle of diffracted X-rays. - The relationship between wavelength, atomic
spacing (d) and angle was solved as the Bragg
Equation.
30Crystal Planes
-
- Single ? between (h1 k1 l1) of sparing d,
and the plane (h2 k2 l2), of - spacing, may be found from the
followings. - Cubic cos?
- Tetragonal cos?
- Hexagonal cos?
-
?
31Crystal Directions
- Crystal Directions in Cubic Crystal System
32Cubic Lattices
- SC (Simple Cubic)
- Atoms situated at the corners of the unit cell.
- Atoms touch along lt100gt and a 2r (r atomic
radius) - BCC (Body-Centred Cubic)
- Atoms situated at the corners of the unit cell
and at the centre. - Atoms touch along lt111gt and a 4r/?3
- FCC (Face-Centred Cubic)
- Atoms situated at the corners of the unit cell
and at the centre of - all cubic faces.
- Atoms touch along lt110gt and a 2r/?2
?
33Tightest Way to Pack Spheres (I)
ABC stacking Sequence (FCC)
ABAB stacking Sequence (HCP)
other close packed structures, ABABCAB etc.
34Tightest Way to Pack Spheres (II)
ABC stacking Sequence (FCC)
ABAB stacking Sequence (HCP)
35Cubic Structures
- Cubic Lattices
- Atoms situated at the corners of the unit cell.
a lattice constant
(a) Simple Cubic
(b) Body-Centered Cubic BCC
(C) Face-Centered Cubic FCC
36Crystal Structure Model
-
- Characteristics of Cubic Lattices
-
-
Simple BCC FCC - Volume of cubic cell a3 a3 a3
- Volume of primitive cell a3 1/2a3 1/4a3
- Type of primitive cell SC rhombohedral
rhombohedral - Lattice points per cubic cell
1 2 4 - Lattice points per unit cell
1/a3 2/a3 4/a3 - Nearest neighbour distance a 1/2?3a 1/2?2a
- of nearest neighbours 6 8 12
- Next nearest neighbour distance ?2 a a a
- of next nearest neighbours 12 6
6
37Crystal Structure Model
- Hard Sphere Model
- Assume that the atoms are considered as hard
spheres
- Simple CubicSC
(b) Body-Centered Cubic BCC
(C) Face Centered Cubic FCC
38Crystal Structure Model
(
a
)
T
h
e
c
r
y
s
t
a
l
s
t
r
u
c
t
u
r
e
o
f
c
o
p
p
e
r
i
s
F
a
c
e
C
e
n
t
e
r
e
d
C
u
b
i
c
(
F
C
C
)
.
T
h
e
a
t
o
m
s
a
r
e
p
o
s
i
t
i
o
n
e
d
a
t
w
e
l
l
d
e
f
i
n
e
d
s
i
t
e
s
a
r
r
a
n
g
e
d
p
e
r
i
o
d
i
c
a
l
l
y
a
n
d
t
h
e
r
e
i
s
a
l
o
n
g
r
a
n
g
e
o
r
d
e
r
i
n
t
h
e
c
r
y
s
t
a
l
.
(
b
)
A
n
F
C
C
u
n
i
t
c
e
l
l
w
i
t
h
c
l
o
s
e
d
p
a
c
k
e
d
s
p
h
e
r
e
s
.
(
c
)
R
e
d
u
c
e
d
s
p
h
e
r
e
r
e
p
r
e
s
e
n
t
a
t
i
o
n
o
f
t
h
e
F
C
C
u
n
i
t
g
c
e
l
l
.
E
x
a
m
p
l
e
s
A
g
,
A
l
,
A
u
,
C
a
,
C
u
,
-
F
e
(
gt
9
1
2
C
)
,
N
i
,
P
d
,
P
t
,
R
h
39Crystal Structure Model
a
(a)
(b)
E
x
a
m
p
l
e
s
A
l
k
a
l
i
m
e
t
a
l
s
(
L
i
,
N
a
,
K
,
R
b
)
,
C
r
,
a
b
M
o
,
W
,
M
n
,
-
F
e
(
lt
9
1
2
C
)
,
-
T
i
(
gt
8
8
2
C
)
.
B
o
d
y
c
e
n
t
e
r
e
d
c
u
b
i
c
(
B
C
C
)
c
r
y
s
t
a
l
s
t
r
u
c
t
u
r
e
.
(
a
)
u
n
i
t
c
e
l
l
w
i
t
h
c
l
o
s
e
l
y
p
a
c
k
e
d
h
a
r
d
s
p
h
e
r
e
s
r
e
p
r
e
s
e
n
t
i
n
g
t
h
e
F
e
a
t
o
m
s
.
(
b
)
A
r
e
d
u
c
e
d
-
s
p
h
e
r
e
u
n
i
t
c
e
l
l
.
40Atomic Packing Factor
- Simple Cubic and FCC Lattices
Number of atoms
Volume of atoms
Number of atoms
Volume of atoms
Volume of unit cell
Volume of unit cell
41Atomic Packing Factor
42Semiconductor Lattice Structures
- The diamond-crystal lattice characterized by four
covalently bonded atoms. - The lattice constant, denoted by ao, is 0.356,
0.543 and 0.565 nm for diamond, silicon, and
germanium, respectively. - Nearest neighbors are spaced ( ) units
apart.
- Of the 18 atoms shown in the figure, only 8
belong to the volume ao3. Because the 8 corner
atoms are each shared by 8 cubes, they contribute
a total of 1 atom the 6 face atoms are each
shared by 2 cubes and thus contribute 3 atoms,
and there are 4 atoms inside the cube. The
atomic density is therefore 8/ao3, which
corresponds to 17.7, 5.00, and 4.43 X 1022 cm-3,
respectively.
(After W. Shockley Electrons and Holes in
Semiconductors, Van Nostrand, Princeton, N.J.,
1950.)
43Semiconductor Lattice Structures
44Semiconductor Lattice Structures
- Diamond and Zincblende Lattices
Diamond lattice can be though of as an FCC
structures with an extra atoms placed at
a/4b/4c/4 from each of the FCC atoms
Zincblende lattice GaAs, InP, ZnSe
Diamond lattice Si, Ge
The Zincblende lattice consist of a face centered
cubic Bravais point lattice which contains two
different atoms per lattice point. The distance
between the two atoms equals one quarter of the
body diagonal of the cube.
45Semiconductor Lattice Structures
- Diamond and Zincblende Lattices
Diamond lattice Si, Ge
Zincblende lattice GaAs, InP, ZnSe
46Crystal Surfaces and Atomic Arrangement
- Arrangement of atoms on various crystal
surfaces.
47Low Miller Index Planes of Cubic Lattice
BCC
(111)
(100)
(110)
FCC
(111)
(100)
(110)
48Low Miller Index Planes Diamond Lattice
- Diamond Lattice Structures
Number of atoms per unit cell 8 Atomic packing
factor 0.34 maximum packing density is 34 .
49Crystal Directions and Atomic Arrangement
- Arrangement of atoms in Diamond lattice
structures -
on various crystal directions.
50Actual Crystal Surfaces Observed by Scanning
Tunneling Microscope
Silicon (111) surface
Silicon (100) surface
51Common Crystal Structures of Semiconductor
52Semiconductor Materials
IV Compounds SiC, SiGe III-V Binary
Compounds AlP, AlAs, AlSb, GaN, GaP, GaAs,
GaSb, InP, InAs, InSb III-V Ternary
Compounds AlGaAs, InGaAs, AlGaP III-V Quternary
Compounds AlGaAsP, InGaAsP II-VI Binary
Compounds ZnS, ZnSe, ZnTe, CdS, CdSe,
CdTe II-VI Ternary Compounds HgCdTe
53Semiconductor Materials