Title: History
1(No Transcript)
2History
3Ellingham diagram
- Other possible reactions are
- (b) C(s) ½ O2(g) ? CO(g)
- (c) CO(g) ½ O2(g) ? CO2(g)
bronze Cu/Sn alloy brass Cu/Zn alloy
4Iron smelting
5Half-reactions
- 2H (aqu) 2e? ? H2(g) ?Gf? ? 0
- H 1 H2 pressure
1 atm - shorthand notation is H/H2 redox couple
- 1. ?G? ?nFE?
- n number of e? transferred
- F Faradays constant 96480 C / mol
- E? std. potential for a rxn or half-rxn
- E? gives ?G? and v.v. (thermodynamic data
can be used to calc E?) - note 1 kJ 1000 CV, so 1 eV ? 100 kJ/mol
nE? ?G?
6Standard cell and potentials
7Half-reactions
8Nernst equation
- . Nernst equation
- E E? ? (0.059 / n) log Q
- Q reaction quotient, for aA ? bB cC
Q Bb Cc / Aa - Ex 2H2O ? O2(g) 4H(aqu) 4e?
E? ?1.23V at pH0 - Ex What is the half-reaction potential to
oxidize water at pH 2? - E E?? (0.059/4)log H4 ?1.23V
0.059(?pH) -1.23V 0.12V -1.11V - Ex What is the water reduction potential at pH
2? - 2e? 2H(aqu) ? H2(g) E? 0 V
at pH0 - E 0V ? (0.059/2) log 1/H2 0V ?
0.059(?pH) ?0.12V
9 Stability field for water
Note that E(O2/H2O) ? E(H2O/H2) 1.23V (pH
independent) E (V) 2e?
2H(aqu) ? H2(g) 0.00 - 0.059pH H2O
? ½O2(g) 2H 2e? -1.23 0.059pH H2O
? H2(g) ½ O2(g) -1.23V
10Kinetic factors
- Some redox reactions have slow kinetics, rates
can be increased when overall Erxn gt 0.6V (high
overpotential exists) - Converse statement kinetically slow reactions
may not occur at appreciable rates if Erxn lt 0.6
V - Examples of rapid reactions
- 1. Erxn gt 0.6V
- 2. outer-sphere mechanisms
- reaction does not make/break strong bonds
or change coordination geometry -
- Ex e? Fe(CN)63?(aqu) ?
Fe(CN)64?(aqu) E? 0.38V - hexacyanoferrate(III)
hexacyanoferrate(II) - ferricyanate ferrocyanate
-
- Ex e? Fe(?5?C5H5)2 ?
Fe(?5?C5H5)2 E? 0.31V - ferrocenium ferrocene
11Kinetic factors
- Examples of slow reactions
- 1. Erxn lt 0.6V
- 2. Reactions that make/break strong bonds
- Ex. reactions with H2, N2, O2 (water redox
chemistry, N2 fixation) - Reactions where n gt 1
12Kinetic factors
- surface passivation
- Ex Al anodization pH 7
- 2Al(s) 6OH?(aqu) ? Al2O3(s)
3H2O 6e? E? 1.7V - 1 ?m Al2O3 passive surface forms during
reaction and acts as a barrier to OH- and O2 - Ex Si(m) in air forms a 30nm SiO2
native oxide passivation layer
Gate 1.0 nm SiO2 on Si
http//nano.boisestate.edu/research-areas/gate-oxi
de-studies/
13Combining half-rxns
- Combining red red (or ox ox) half-reactions
- E? / V ?G? / kJ/mol
- 1. e? Mn3 ? Mn2 1.5 ?148
- 2. e? MnO2 4H ? Mn3 2H2O 0.95
?92 - 3. 2e? MnO2 4H ? Mn2 2H2O 1.23
?240 - E3 (n1E1 n2 E2) / n3 (1)(1.5)
(1)(0.95) / 2 1.23V - Combining red ox half-reactions
- 1. e? Mn3 ? Mn2 1.5V
- 2. 2H2O Mn3 ? e? MnO2 4H ?0.95V
- 2H2O 2Mn3 ? Mn2 MnO2 4H 0.55V
- this disproportionation is spontaneous in acidic
soln, but slow
14Latimer Frost diagrams for Mn in acid
15Frost diagrams
prop to -?G?
16Frost diagrams
17Frost diagram for N
18pH effect
- Oxoacids are better oxidants in acidic solution
than in basic solution - 10e? 2HNO3 10H ? N2 6H2O E
1.25V at pH0 - 10e? 2NO3- 6H2O ? N2 12OH?
E 0.25V at pH14 - because they combine with H to lose oxo or
hydroxy ligands
19Ligand effects
Note that e? Fe3(aqu) ?
Fe2(aqu) E? 0.77V But
e? Fe(CN)63?(aqu) ? Fe(CN)64?(aqu)
E? 0.38V gt cyano ligand stabilizes
Fe3 more than OH2 1.80V 0.80 AgO ?
Ag ? Ag(m) pH0 0.60 0.34 AgO ?
Ag2O ? Ag(m) pH14 1.69 Au ?
Au(m) pH0 0.60 Au(CN)2?
? Au(m) pH0
Zn(m)
Zn(CN)2(s) Au(s)
CN? poisoning ? inhibits cytochrome oxidase in
mitochondria
KOH
Zn(OH)42?(aqu) Au(s)
20Pourbaix diagram for Fe
e- Fe3 ? Fe2 E 0.77 V e-
Fe(OH)3 3H ? Fe2 3H2O E E0 -
3(0.059) pH e- Fe(OH)3 ? Fe(OH)2 OH- E
E0 - 0.059 pH
21Pourbaix diagram for Mn
22Example Group 13