ACCENT Experiment 2 - PowerPoint PPT Presentation

About This Presentation
Title:

ACCENT Experiment 2

Description:

Title: Slide 1 Author: davids Last modified by: davids Created Date: 6/26/2005 9:41:17 PM Document presentation format: On-screen Show Company: The University of ... – PowerPoint PPT presentation

Number of Views:108
Avg rating:3.0/5.0
Slides: 32
Provided by: dav9171
Category:

less

Transcript and Presenter's Notes

Title: ACCENT Experiment 2


1
ACCENT Experiment 2
  • 25 different models perform same experiments
  • 15 Europe
  • 4 UK (STOCHEM x2, UM_CAM, TOMCAT)
  • 3 Germany (MATCH-MPIC x2, MOZECH)
  • 2 France (LMDzINCA x2)
  • 2 Italy (TM5, ULAQ)
  • 1 Switzerland (GEOS-CHEM)
  • 1 Norway (UIO_CTM2)
  • 1 Netherlands (TM4)
  • 1 Belgium (IASB)
  • 7 US
  • GMI (x3), NCAR (MOZART4), GFDL (MOZART2), LLNL,
    GISS
  • 3 Japan
  • JAMSTEC CHASER (x2), FRSGC/UCI
  • Large ensemble reduces uncertainties, and allows
    them to be quantified

2
ACCENT Expt 2
  • Consider 2030 the next generation of direct
    interest for policymakers
  • 3 Emissions scenarios
  • Likely IIASA CLE (Current Legislation)
  • Low IIASA MFR (Maximum technically
    Feasible Reductions)
  • High IPCC SRES A2
  • Also assess climate feedbacks
  • expected surface warming of 0.7K by 2030
  • Target IPCC-AR4

3
People Organisation
  • Co-ordination NS-deposition, Tropospheric O3
  • F. Dentener, D. Stevenson
  • Surface O3 - impacts on health/vegetation
    web-site
  • K. Ellingsen
  • NO2 columns comparison of models and satellite
    data
  • T. van Noije, H. Eskes
  • Emissions
  • M. Amann, J. Cofala, L. Bouwman, B. Eickhout
  • Data handling and storage (SRB 1 TB of model
    output)
  • J. Sundet
  • Other modellers and contributors
  • C.S. Atherton, N. Bell, D.J. Bergmann, I. Bey, T.
    Butler, W.J. Collins, R.G. Derwent, R.M. Doherty,
    J. Drevet, A. Fiore, M. Gauss, D. Hauglustaine,
    L. Horowitz, I. Isaksen, M. Krol, J.-F. Lamarque,
    M. Lawrence, V. Montanaro, J.-F. Müller, G.
    Pitari, M.J. Prather, J. Pyle, S. Rast, J.
    Rodriguez, M. Sanderson, N. Savage, M. Schultz,
    D. Shindell, S. Strahan, K. Sudo, S. Szopa, O.
    Wild, G. Zeng

4
IPCC-AR4-ACCENT High Ship Emission Scenario
  • Scenario S4 IPCC A2, but with ship emissions of
    the year 2000
  • Scenario S4s "Worst" case ship emission
    scenario in conjunction with S4.

Simulation ID emissions Meteo
S1 IIASA-CLE-2000 2000
S1c IIASA-CLE-2000 1990s/2000s
S2 IIASA-CLE-2030 2000
S2c IIASA-CLE-2030 1990s/2000s
S3 IIASA-MRF-2030 2000
S4 SRES-A2-2030, but with ship emissions of the year 2000 2000
S4s SRES-A2-2030 Traffic A2s Ship emissions increase with a flat increase of 2.2 /year compared to the year 2000 2000
S5c IIASA-CLE-2030 2020s/2030s
5
SO2 High ship emissions A2s "2030"
NOx High ship emissions A2s "2030"
SO2 emissions A2 "2000"
NOx emissions A2 "2000"
6
IPCC-AR4-ACCENT High Ship Emission Scenario
Characteristics
2000 A2(2030) A2s(new) A2s-A2
SO2 in Tg(SO2)/yr 11.23 31.7 38.84 7.14
NOx in Tg(NO2)/yr 52.74 107.4 116.8 9.4
  • The idea of comparing A2 to A2s
  • What is the influence of ship emissions on
    tropospheric chemistry in 2030 if they were
    unabated?
  • Does an ensemble of models give approximately
    the same answer regarding the influence of ship
    emissions?
  • Status Data analysis recently started
  • Thanks to everybody who sent data so far
    (FRSGC_UCI, LMDz/INCA, MATCH-MPIC, TM4)
  • We invite all other model groups to join in the
    inter-comparison
  • If you are interested, please contact
    Veronika.Eyring_at_dlr.de and Axel.Lauer_at_dlr.de

7
Year 2000 Anthropogenic NOx Emissions
EDGAR database Jos Olivier et al., RIVM
Plot Martin Schultz, MPI
8
Year 2000 tropospheric NO2 columns
Model(ensemble mean)
Observed (GOME)(mean of 3 methods)
(1030am local sampling in both cases)
Courtesy Twan van Noije, Henke Eskes figure
from Dentener et al, submitted
9
Modelled column NO2 vs GOME retrievals over Europe
Courtesy Twan van Noije
10
NOy wet deposition zoom over Europe
Courtesy Frank Dentener
11
Global NOx emission scenarios
SRES A2
CLE
MFR
Figure 1. Projected development of IIASA
anthropogenic NOx emissions by SRES world region
(Tg NO2 yr-1).
12
Regional NOx emissions
Ships/aircraft unregulated may become larger
than any regional source by 2030
USA flat
Europe falling
Asia rising
Figure 4. Regional emissions separated for
sources categories in 1990, 2000, 2030-CLE and
2030-MFR for NOx Tg NO2 yr-1
13
Emission Changes 2030 CLE - 2000
Plots Martin Schultz, MPI
IIASA RAINS model Markus Amann et al.
14
Year 2000 Annual Zonal Mean Ozone (24 models)
15
Year 2000 Ensemble meanof 25 models AnnualZonal
Mean Annual TroposphericColumn
16
Standard Deviationof 25 models
Absolute Standard Deviationof 25 models
Ensemble meanof 25 models
Year 2000 Annual Mean O3
17
Year 2000 Inter-model standard deviation
() AnnualZonalMean Annual
TroposphericColumn
18
Comparison of ensemble mean model with O3 sonde
measurements
UT250 hPa
Model 1SD
Observed 1SD
J F M A M J J A S O N D
MT 500 hPa
LT 750 hPa
30S-Eq
30N-Eq
90-30N
90-30S
19
2030 MRF - 2000
2030 A2 - 2000
2030 CLE - 2000
20
Tropospheric O3 scales linearly with NOx
emissions
21
Radiative forcing implications
Forcings (mW m-2) 2000-2030 for the 3 scenarios
37
-23
CO2
CH4
O3
22
Impact of Climate Change on Ozone by
2030(ensemble of 9 models)
Mean
Mean - 1SD
Mean 1SD
Positive and negative feedbacks no clear
consensus
23
Budgets ofmethaneandtropospheric ozone
24
19 Models reported O3 budgets
25
(No Transcript)
26
Highest H2O High Lightning NOx (8 TgN/yr)
O3 chemical loss / Tg-O3 yr-1
More complicated- other factors
CH4 lifetime / years
27
Tropospheric water vapour in 6 GCMs
Differences of 10 in tropics
Tropospheric H2O column / g(H2O) m-2
90S Eq
90N
28
AOT40, May-June-July, mean model, ppbhours
Courtesy Kjerstin Ellingsen
29
Change in AOT40 (CLE)
30
Change in AOT40 (MFR)
31
Change in AOT40 (A2)
32
Conclusions
  • Logistics
  • Large group participation partly due to
    IPCC-AR4
  • Lot of work involved relies on funding
    goodwill
  • Need well defined experiments and diagnostics
  • Central database and strict data format
  • Assume mistakes will be made in first attempts
  • Enforce deadlines if possible
  • Science
  • Multi-model ensemble allows uncertainties to be
    assessed
  • Sample large model parameter space
  • Get hints about the controls on internal model
    processes
  • Future work
  • Water vapour, convection, lightning NOx, isoprene
    schemes
  • STE, biomass burning
  • Global HOx/NOx/NOy budgets, as well as O3 and CH4
Write a Comment
User Comments (0)
About PowerShow.com