Title: Depth-First Search
1Depth-First Search
2Depth-First Search (DFS)
- DFS is another popular graph search strategy
- Idea is similar to pre-order traversal (visit
node, then visit children recursively) - DFS will continue to visit neighbors in a
recursive pattern - Whenever we visit v from u, we recursively visit
all unvisited neighbors of v. Then we backtrack
(return) to u.
3DFS Traversal Example
4DFS Algorithm
Flag all vertices as notvisited
Flag v as visited print v
print v
For unvisited neighbors,call RDFS(w) recursively
We can also record the paths using prev . Where
do we insert the code for prev ?
5Example
Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
F
F
F
F
F
F
F
F
F
F
-
-
-
-
-
-
-
-
-
-
source
Pred
Initialize visited table (all False) Initialize
Pred to -1
6Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
F
F
T
F
F
F
F
F
F
F
-
-
-
-
-
-
-
-
-
-
source
Pred
Mark 2 as visited
RDFS( 2 ) Now visit RDFS(8)
7Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
F
F
T
F
F
F
F
F
T
F
-
-
-
-
-
-
-
-
2
-
source
Pred
Mark 8 as visited mark Pred8
Recursivecalls
RDFS( 2 ) RDFS(8) 2 is already visited,
so visit RDFS(0)
8Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
F
T
F
F
F
F
F
T
F
8
-
-
-
-
-
-
-
2
-
source
Pred
Mark 0 as visited Mark Pred0
Recursivecalls
RDFS( 2 ) RDFS(8) RDFS(0) -gt no
unvisited neighbors, return
to call RDFS(8)
9Back to 8
Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
F
T
F
F
F
F
F
T
F
8
-
-
-
-
-
-
-
2
-
source
Pred
Recursivecalls
RDFS( 2 ) RDFS(8) Now visit 9 -gt
RDFS(9)
10Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
F
T
F
F
F
F
F
T
T
8
-
-
-
-
-
-
-
2
8
source
Pred
Mark 9 as visited Mark Pred9
Recursivecalls
RDFS( 2 ) RDFS(8) RDFS(9) -gt visit 1,
RDFS(1)
11Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
F
F
F
F
F
T
T
8
9
-
-
-
-
-
-
2
8
source
Pred
Mark 1 as visited Mark Pred1
Recursivecalls
RDFS( 2 ) RDFS(8) RDFS(9)
RDFS(1) visit RDFS(3)
12Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
T
F
F
F
F
T
T
8
9
-
1
-
-
-
-
2
8
source
Pred
Mark 3 as visited Mark Pred3
Recursivecalls
RDFS( 2 ) RDFS(8) RDFS(9)
RDFS(1) RDFS(3)
visit RDFS(4)
13Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
T
T
F
F
F
T
T
8
9
-
1
3
-
-
-
2
8
source
Pred
RDFS( 2 ) RDFS(8) RDFS(9)
RDFS(1) RDFS(3)
RDFS(4) ? STOP all of 4s neighbors have been
visited
return back to call RDFS(3)
Mark 4 as visited Mark Pred4
Recursivecalls
14Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
T
T
F
F
F
T
T
8
9
-
1
3
-
-
-
2
8
source
Back to 3
Pred
RDFS( 2 ) RDFS(8) RDFS(9)
RDFS(1) RDFS(3)
visit 5 -gt RDFS(5)
Recursivecalls
15Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
T
T
T
F
F
T
T
8
9
-
1
3
3
-
-
2
8
source
Pred
RDFS( 2 ) RDFS(8) RDFS(9)
RDFS(1) RDFS(3)
RDFS(5)
3 is already visited, so visit 6 -gt RDFS(6)
Mark 5 as visited Mark Pred5
Recursivecalls
16Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
T
T
T
T
F
T
T
8
9
-
1
3
3
5
-
2
8
source
Pred
RDFS( 2 ) RDFS(8) RDFS(9)
RDFS(1) RDFS(3)
RDFS(5)
RDFS(6)
visit 7 -gt RDFS(7)
Mark 6 as visited Mark Pred6
Recursivecalls
17Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
T
T
T
T
T
T
T
8
9
-
1
3
3
5
6
2
8
source
Pred
RDFS( 2 ) RDFS(8) RDFS(9)
RDFS(1) RDFS(3)
RDFS(5)
RDFS(6)
RDFS(7) -gt Stop no more unvisited neighbors
Mark 7 as visited Mark Pred7
Recursivecalls
18Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
T
T
T
T
T
T
T
8
9
-
1
3
3
5
6
2
8
source
Pred
RDFS( 2 ) RDFS(8) RDFS(9)
RDFS(1) RDFS(3)
RDFS(5)
RDFS(6) -gt Stop
Recursivecalls
19Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
T
T
T
T
T
T
T
8
9
-
1
3
3
5
6
2
8
source
Pred
RDFS( 2 ) RDFS(8) RDFS(9)
RDFS(1) RDFS(3)
RDFS(5) -gt Stop
Recursivecalls
20Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
T
T
T
T
T
T
T
8
9
-
1
3
3
5
6
2
8
source
Pred
RDFS( 2 ) RDFS(8) RDFS(9)
RDFS(1) RDFS(3) -gt Stop
Recursivecalls
21Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
T
T
T
T
T
T
T
8
9
-
1
3
3
5
6
2
8
source
Pred
RDFS( 2 ) RDFS(8) RDFS(9) RDFS(1)
-gt Stop
Recursivecalls
22Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
T
T
T
T
T
T
T
8
9
-
1
3
3
5
6
2
8
source
Pred
RDFS( 2 ) RDFS(8) RDFS(9) -gt Stop
Recursivecalls
23Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
T
T
T
T
T
T
T
8
9
-
1
3
3
5
6
2
8
source
Pred
RDFS( 2 ) RDFS(8) -gt Stop
Recursivecalls
24Example Finished
Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
T
T
T
T
T
T
T
8
9
-
1
3
3
5
6
2
8
source
Pred
RDFS( 2 ) -gt Stop
Recursive calls finished
25Time Complexity of DFS
- We never visited a vertex more than once.
- We had to examine the adjacency lists of all
vertices. - Svertex v degree(v) 2E
- So, the running time of DFS is proportional to
the number of edges and number of vertices (same
as BFS) - O(V E)
26Enhanced DFS Algorithm
- What if a graph is not connected (strongly
connected)? - Use an enhanced version of DFS, which is similar
to the enhanced BFS algorithm.
- DFSearch( G )
- i 1 // component number
- for every vertex v
- flagv false
- for every vertex v
- if ( flagv false )
- print ( Component i )
- RDFS( v )
-
-
27Applications of DFS
- Is there a path from source s to a vertex v?
- Is an undirected graph connected?
- Is a directed graph strongly connected?
- To output the contents (e.g., the vertices) of a
graph - To find the connected components of a graph
- To find out if a graph contains cycles and report
cycles. - To construct a DSF tree/forest from a graph
28DFS Path Tracking
Adjacency List
Visited Table (T/F)
0
1
2
3
4
5
6
7
8
9
T
T
T
T
T
T
T
T
T
T
8
9
-
1
3
3
5
6
2
8
source
Pred
DFS find out path too
Try some examples. Path(0) -gt Path(6) -gt Path(7)
-gt
29Next time
- Applications of BFS and DFS
- Review