Analysis of the Coupled Journal and Thrust Bearing - PowerPoint PPT Presentation

1 / 40
About This Presentation
Title:

Analysis of the Coupled Journal and Thrust Bearing

Description:

Analysis of the Coupled Journal and Thrust Bearing August 21 2004 Hakwoon Kim PREM, Department of Mechanical Engineering Hanyang University, Seoul, Korea – PowerPoint PPT presentation

Number of Views:347
Avg rating:3.0/5.0
Slides: 41
Provided by: premHany8
Category:

less

Transcript and Presenter's Notes

Title: Analysis of the Coupled Journal and Thrust Bearing


1
Analysis of the CoupledJournal and Thrust Bearing
  • August 21 2004
  • Hakwoon Kim
  • PREM, Department of Mechanical Engineering
  • Hanyang University, Seoul, Korea

2
Contents
  • Motivation
  • Reynolds Equation
  • - Reynolds equation
  • - Boundary condition
  • - Load capacity and friction torque
  • - Finite element method for a coupled journal and
    thrust bearing
  • Perturbation
  • - Physical perturbation
  • Analysis Result
  • - Coupled analysis vs separate analysis of FDB of
    a 3.5 " HDD
  • - Reynolds BC vs half-Sommerfeld BC of FDB of a
    3.5 " HDD
  • - FDB of a 1" Micro Driver with the effect of
    recirculation channel
  • - Result and discussion
  • Future Work

3
Motivation
lt Structure of a 3.5" FDB spindle motor gt
lt Structure of a 1" FDB spindle motor gt
  • FDB of HDDs is composed of several sections,
    which are grooved or plain journal or thrust
    bearings.
  • Sometimes, they are connected through
    recirculation channel.
  • One section affects the others in terms of
    pressure and flow of lubricant

4
Reynolds equation
  • Reynolds equation for journal bearing

- filmthickness
lt Journal bearing geometry gt
5
Reynolds equation
  • Reynolds equation for thrust bearing

- filmthickness
lt Thrust bearing geometry gt
6
Boundary condition
  • The solution for a full 360 degree journal
    bearing leads to skew-symmetric pressure
    distribution.
  • The pressures in the divergent film are all lower
    than ambient pressure.
  • The negative pressure can be neglected with the
    fact that the saturation pressure is similar to
    ambient pressure
  • But it violates the continuity of mass flow and
    pressure gradient at the outlet end of the
    pressure curve.
  • The better boundary condition is Reynolds BC,
    where
  • ? can be determined numerically by the iterative
    method.

7
Load capacity and friction torque
  • Use the finite element method to solve Reynolds
    equation and to determine the pressure
    distribution
  • Load capacity, friction torque and attitude angle
    of journal bearing
  • Load capacity, friction torque of thrust bearing

8
Finite element method for
a coupled journal and thrust bearing
  • Calculate the finite element matrix for journal
    and thrust bearing appropriately
  • Assemble the element matrix to global matrix
  • Apply the BC at the external boundaries
  • At the internal boundaries, pressure and mass
    continuity is automatically conserved
  • In case of Reynolds BC, the global finite element
    equation is iteratively solved until Reynolds BC
    is satisfied

9
Perturbation
  • In the case of coupled journal and thrust
    bearing, the boundary value problem can not be
    defined because the perturbed pressure
    on the interface between the
    journal and the thrust bearing is not defined
  • Physical perturbation has to be used for this
    case
  • Dynamic coefficients are calculated by comparing
    the change of bearing reaction forces and moments
    with respect to the change of translational and
    angular displacements and velocities in each
    direction

10
Perturbation
  • 3.1 Perturbation for journal bearing
  • Step 1 Set the coordinate system considering
  • attitude angle calculated by initial static
    analysis
  • Step 2 Calculate the initial load and moment
    with
  • respect to the new coordinate system
  • Step 3 Calculate the loads and moments
  • considering perturbed displacements and
  • velocities, i.e.
  • Step 4 Calculate the dynamic characteristics
  • from following equation

lt Geometrical description of physical
perturbation by ?ex gt
11
Perturbation
  • 3.2 Perturbation for thrust bearing
  • Step 1 Set the coordinate system
  • Step 2 Calculate the initial load and moment
    with
  • respect to the fixed coordinate system
  • Step 3 Calculate the loads and moments
  • considering perturbed displacements and
  • velocities, i.e.
  • Step 4 Calculate the dynamic characteristics

lt Geometrical description of physical
perturbation by ?ez gt
12
Perturbation
  • Merits of physical perturbation
  • It is not necessary to consider boundary values
    of perturbation equations
  • It can handle any case of hydrodynamic bearing
    including the coupled journal and thrust bearing
  • The radial-and-axial coupled stiffness and
    damping can be observed
  • Demerits of physical perturbation
  • This method is dependent on the amount of
    perturbation, i.e., perturbed displacement and
    velocity
  • It needs fine mesh for a good estimate
  • It takes longer computational time than
    mathematical perturbation method

13
Analysis result
  • 4.1 Coupled analysis vs. separate analysis of
    FDB of a 3.5 " HDD

(1) Plain region in journal ( Plain 1 )
(2) Upper journal bearing
(3) Plain region in journal ( Plain 3 )
(4) Lower journal bearing
(5) Plain region in journal ( Plain 5 )
(6) Upper thrust bearing
(7) Plain region in journal ( Plain 7 )
(8) Lower thrust bearing
(9) Plain region in thrust ( Plain 9 )
14
Analysis result
  • Specification of analysis model

Upper Journal Lower Journal Upper Thrust Lower Thrust
Bearing Width mm Bearing Width mm 2.6 (Top1.4, Bottom1.2) 2.4 (Top1.2, Bottom1.2) - -
ID and OD of Thrust mm ID and OD of Thrust mm - - ID 5.0, OD 6.8 ID 4.0, OD 6.8
Groove Pattern Groove Pattern Herringbone Herringbone Herringbone Herringbone
Groove depth ?m Groove depth ?m 6.0 6.0 10.0 10.0
Groove Angle deg Groove Angle deg 20.0 20.0 20.0 20.0
Clearance ?m Clearance ?m 2.5 2.5 9.0 9.0
Radius of Journal mm Radius of Journal mm 2.0 2.0 - -
Number of groove Number of groove 6 6 12 12
Groove to Groove and Ridge Ratio 0.3333 0.3333 0.3333 0.3333
Width of Plain Area mm Width of Plain Area mm Upper Plain of Journal (Plain 1) 0.4 ( Depth 0.1 ) Center Plain of Journal (Plain 3) 2.2 ( Depth 0.1 ) Lower Plain of Journal (Plain 5) 0.4 ( Depth 0.1 ) Upper Plain of Journal (Plain 1) 0.4 ( Depth 0.1 ) Center Plain of Journal (Plain 3) 2.2 ( Depth 0.1 ) Lower Plain of Journal (Plain 5) 0.4 ( Depth 0.1 ) Inner Plain 0.5 ( Depth 0.03 ) Outer Plain 0.2 ( Depth 0.03 ) Inner Plain 0.5 ( Depth 0.03 ) Outer Plain 0.2 ( Depth 0.03 )
Viscosity(25 deg C) Pas Viscosity(25 deg C) Pas 0.016 0.016 0.016 0.016
Rotating Speed rpm Rotating Speed rpm 7200 7200 7200 7200
15
Analysis result
  • Analysis model and result of pressure distribution
  • Number of node 6121 EA
  • Number of element 5508 EA
  • Element type 4-node quadrilateral element

16
Analysis result
  • Result comparison between coupled analysis and
    separate analysis

Pressure distribution
  • Eccentricity ratio 0.1
  • Max pressure in upper journal 3.344 MPas
  • Max pressure in lower journal 3.314 MPas
  • Eccentricity ratio 0.1
  • Max pressure in upper journal 3.124 MPas
  • Max pressure in lower journal 2.934 MPas

lt Coupled analysis of journal bearing gt
lt Separate analysis of journal bearing gt
17
Analysis result
  • Clearance 9.0 ?
  • Max pressure in upper journal 509.1 KPas
  • Clearance 9.0 ?
  • Max pressure in upper journal 110.2 KPas

lt Coupled analysis of upper thrust bearing gt
lt Separate analysis of upper thrust bearing gt
18
Analysis result
  • Clearance of lower thrust 9.0 ?
  • Clearance of center plain 500 ?
  • Max pressure in upper journal 529.8 KPas
  • Clearance 9.0 ?
  • Max pressure in upper journal 125.3 KPas

lt Coupled analysis of lower thrust bearing gt
lt Separate analysis of lower thrust bearing gt
19
Analysis result
Static characteristics
Part Coupled analysis Coupled analysis Separate analysis Separate analysis
Part Load capacity N Friction torque Nm Load capacity N Friction torque Nm
Plain 1 1.06776e-005 2.42556e-006 - -
Upper journal 3.04791e000 5.31127e-004 3.00549e000 5.30798e-004
Plain 3 2.19960e-003 1.33409e-005 - -
Lower journal 2.60350e000 4.89889e-004 2.51866e000 4.89858e-004
Plain 5 7.16112e-004 2.42565e-006 - -
Upper thrust -1.18044e001 1.99011e-004 5.42952e-001 1.98735e-004
Plain 7 4.27706e-005 1.41458e-005 - -
Lower thrust 1.47111e001 2.33986e-004 1.05478e000 2.33815e-004
Plain 9 2.94034e000 1.91859e-007 - -
20
Analysis result
Dynamic characteristics
  • Stiffness coefficient comparison

Coupled analysis Coupled analysis Coupled analysis Coupled analysis Separate analysis Separate analysis Separate analysis Separate analysis
Total system Upper journal Lower journal Thrust part Upper journal Lower journal Upper thrust Lower thrust part
Kxx 1.5508e007 8.3079e006 7.2027e006 0.0000e000 8.3142e006 7.2140e006 0.0000e000 0.0000e000
Kyy 1.5295e007 8.1344e006 7.1635e006 0.0000e000 8.1451e006 7.1677e006 0.0000e000 0.0000e000
Kzz 5.9278e005 0.0000e000 0.0000e000 5.9278e005 0.0000e000 0.0000e000 1.5332e005 4.3561e005
  • Damping coefficient comparison

Coupled analysis Coupled analysis Coupled analysis Coupled analysis Separate analysis Separate analysis Separate analysis Separate analysis
Total system Upper journal Lower journal Thrust part Upper journal Lower journal Upper thrust Lower thrust part
Cxx 3.9199e004 2.1447e004 1.7725e004 0.0000e000 2.1015e004 1.7671e004 0.0000e000 0.0000e000
Cyy 3.9184e004 2.1402e004 1.7755e004 0.0000e000 2.0922e004 1.7701e004 0.0000e000 0.0000e000
Czz 2.1473e005 0.0000e000 0.0000e000 2.1473e005 0.0000e000 0.0000e000 1.3796e002 5.9448e003
21
Analysis result
  • 4.2. Reynolds BC vs half-Sommerfeld BC of FDB of
    a 3.5 " HDD

(1) Plain region in journal ( Plain 1 )
(2) Upper journal bearing
(3) Plain region in journal ( Plain 3 )
(4) Lower journal bearing
(5) Plain region in journal ( Plain 5 )
(6) Upper thrust bearing
(7) Plain region in journal ( Plain 7 )
(8) Lower thrust bearing
(9) Plain region in thrust ( Plain 9 )
22
Analysis result
  • Specification of analysis model

Upper Journal Lower Journal Upper Thrust Lower Thrust
Bearing Width mm Bearing Width mm 2.4 (Top1.2, Bottom1.2) 2.4 (Top1.2, Bottom1.2) - -
ID and OD of Thrust mm ID and OD of Thrust mm - - ID 4.0, OD 7.2 ID 4.0, OD 7.2
Groove Pattern Groove Pattern Herringbone Herringbone Spiral Spiral
Groove depth ?m Groove depth ?m 6.0 6.0 10.0 10.0
Groove Angle deg Groove Angle deg 20.0 20.0 20.0 20.0
Clearance ?m Clearance ?m 2.5 2.5 9.0 9.0
Radius of Journal mm Radius of Journal mm 2.0 2.0 - -
Number of groove Number of groove 6 6 12 12
Groove to Groove and Ridge Ratio 0.3333 0.3333 0.3333 0.3333
Width of Plain Area mm Width of Plain Area mm Upper Plain of Journal (Plain 1) 0.4 ( Depth 0.1 ) Center Plain of Journal (Plain 3) 2.2 ( Depth 0.1 ) Lower Plain of Journal (Plain 5) 0.4 ( Depth 0.1 ) Upper Plain of Journal (Plain 1) 0.4 ( Depth 0.1 ) Center Plain of Journal (Plain 3) 2.2 ( Depth 0.1 ) Lower Plain of Journal (Plain 5) 0.4 ( Depth 0.1 ) - -
Viscosity(25 deg C) Pas Viscosity(25 deg C) Pas 0.016 0.016 0.016 0.016
Rotating Speed rpm Rotating Speed rpm 7200 7200 7200 7200
23
Analysis result
  • Number of node 6121 EA
  • Number of element 5508 EA
  • Element type 4-node quadrilateral element

24
Analysis result
  • Result comparison between using half Sommerfeld
    BC and Reynolds BC

Pressure distribution
  • Max pressure in FDB 2.984 MPas
  • Max pressure in FDB 3.036 MPas

lt Analysis result using half Sommerfeld BC gt
lt Analysis result using Reynolds BC gt
25
Analysis result
  • Eccentricity ratio 0.1
  • Max pressure in upper journal 2.984 MPas
  • Max pressure in lower journal 2.971 MPas
  • Eccentricity ratio 0.1
  • Max pressure in upper journal 3.036 MPas
  • Max pressure in lower journal 3.105 MPas

lt Analysis result using half Sommerfeld BC gt
lt Analysis result using Reynolds BC gt
26
Analysis result
  • Clearance of lower thrust 9.0 ?
  • Max pressure in upper journal 39.467 KPas
  • Clearance 9.0 ?
  • Max pressure in upper journal 212.350 KPas

lt Analysis result using half Sommerfeld BC gt
lt Analysis result using Reynolds BC gt
27
Analysis result
  • Clearance of lower thrust 9.0 ?
  • Clearance of center plain 500 ?
  • Max pressure in upper journal 38.969 KPas
  • Clearance 9.0 ?
  • Clearance of center plain 500 ?
  • Max pressure in upper journal 213.540 KPas

lt Analysis result using half Sommerfeld BC gt
lt Analysis result using Reynolds BC gt
28
Analysis result
Static characteristics
Part Half Sommerfeld boundary condition Half Sommerfeld boundary condition Reynolds boundary condition Reynolds boundary condition
Part Load capacity N Friction torque Nm Load capacity N Friction torque Nm
Plain 1 1.03087e-005 2.42556e-006 9.29389e-006 2.42556e-006
Upper journal 2.65314e000 4.90212e-004 2.62102e000 4.90341e-004
Plain 3 2.17523e-003 1.33409e-005 2.17079e-003 1.33409e-005
Lower journal 2.60357e000 4.89889e-004 2.60358e000 4.89889e-004
Plain 5 7.70566e-004 2.42565e-006 7.68795e-004 2.42565e-006
Upper thrust - 1.31307e-001 2.62797e-004 - 2.91657e000 2.55022e-004
Plain 7 0.00000e000 1.41458e-005 3.06280e-004 1.41459e-005
Lower thrust 1.31140e-001 2.64862e-004 2.93510e000 2.72671e-004
Plain 9 4.87674e-001 6.06371e-007 2.67233e000 6.06371e-007
29
Analysis result
Dynamic characteristics
  • Stiffness coefficient comparison

Half Sommerfeld boundary condition Half Sommerfeld boundary condition Half Sommerfeld boundary condition Half Sommerfeld boundary condition Reynolds boundary condition Reynolds boundary condition Reynolds boundary condition Reynolds boundary condition
Total system Upper journal Lower journal Thrust part Total system Upper journal Lower journal Thrust part
Kxx 1.4582e007 7.3819e006 7.2028e006 0.0000e000 1.4627e007 7.4270e006 7.2032e006 0.0000e000
Kyy 1.4501e007 7.3406e006 7.1633e006 0.0000e000 1.4546e007 7.3860e006 7.1631e006 0.0000e000
Kzz 2.2979e006 0.0000e000 0.0000e000 2.2979e006 2.5775e006 0.0000e000 0.0000e000 2.5775e006
  • Damping coefficient comparison

Half Sommerfeld boundary condition Half Sommerfeld boundary condition Half Sommerfeld boundary condition Half Sommerfeld boundary condition Reynolds boundary condition Reynolds boundary condition Reynolds boundary condition Reynolds boundary condition
Total system Upper journal Lower journal Thrust part Total system Upper journal Lower journal Thrust part
Cxx 3.5855e004 1.8100e004 1.7728e004 0.0000e000 3.5468e004 1.7712e004 1.7729e004 0.0000e000
Cyy 3.5909e004 1.8128e004 1.7754e004 0.0000e000 3.5517e004 1.7737e004 1.7753e004 0.0000e000
Czz 2.0680e005 0.0000e000 0.0000e000 2.0679e005 1.0397e004 0.0000e000 0.0000e000 1.0397e004
30
Analysis result
  • 4.3. FDB of a 1" Micro Driver with the effect of
    recirculation channel

(1) Plain region in journal ( Plain 1 )
(2) Upper journal bearing
(3) Plain region in journal ( Plain 3 )
(4) Lower journal bearing
(5) Plain region in journal ( Plain 5 )
(8) Thrust bearing
(9) Lower plain ( Plain 9 )
- 3 recirculation channels between upper thrust
bearing and lower plain thrust bearing
31
Analysis result
  • Specification of analysis model

Upper Journal Lower Journal Thrust Lower Plain
Bearing Width mm Bearing Width mm 1.76 (Top0.96, Bottom0.8) 1.6 (Top0.8, Bottom0.8) - -
ID and OD of Thrust mm ID and OD of Thrust mm - - ID 4.6, OD 6.0 ID 0, OD 1.25
Groove Pattern Groove Pattern Herringbone Herringbone Spiral Plain
Groove depth ?m Groove depth ?m 5.0 5.0 15.0 0
Groove Angle deg Groove Angle deg 21.0 21.0 20.0
Clearance ?m Clearance ?m 4.0 4.0 15.0 500
Radius of Journal mm Radius of Journal mm 1.25 1.25 - -
Number of groove Number of groove 16 16 20
Groove to Groove and Ridge Ratio 0.41667 0.41667 0.5
Width of Plain Area mm Width of Plain Area mm Upper Plain of Journal (Plain 1) 0.1 ( Depth 0.1 ) Center Plain of Journal (Plain 3) 1.0 ( Depth 0.1 ) Lower Plain of Journal (Plain 5) 0.1 ( Depth 0.1 ) Upper Plain of Journal (Plain 1) 0.1 ( Depth 0.1 ) Center Plain of Journal (Plain 3) 1.0 ( Depth 0.1 ) Lower Plain of Journal (Plain 5) 0.1 ( Depth 0.1 ) Inner Plain 1.05 ( Depth 0 ) -
Viscosity(25 deg C) Pas Viscosity(25 deg C) Pas 0.016 0.016 0.016 0.016
Rotating Speed rpm Rotating Speed rpm 4200 4200 4200 4200
32
Analysis result
  • Analysis model and result of pressure
    distribution
  • Number of node 11041 EA
  • Number of element 10000 EA
  • Element type 4-node quadrilateral element

33
Analysis result
  • Result comparison between FDB with recirculation
    channel and FDB without recirculation channel

Pressure distribution
  • Eccentricity ratio 0.1
  • Max pressure in upper journal 302.960 KPas
  • Max pressure in lower journal 297.770 KPas
  • Eccentricity ratio 0.1
  • Max pressure in upper journal 292.080 KPas
  • Max pressure in lower journal 269.470 KPas

lt Journal bearing without recirculation channelgt
lt Journal bearing with recirculation channelgt
34
Analysis result
  • Clearance 15.0 ?
  • Max pressure in thrust 208.64 KPas
  • Clearance 15.0 ?
  • Max pressure in thrust 209.03 KPas

lt Thrust bearing without recirculation channelgt
lt Thrust bearing with recirculation channelgt
35
Analysis result
  • Clearance 500.0 ?
  • Max pressure in lower plain 56.634 KPas
  • Clearance 500.0 ?
  • Max pressure in lower plain 19.636 KPas

lt Lower plain bearing without recirculation
channelgt
lt Lower plain bearing with recirculation channelgt
36
Analysis result
  • Clearance 500.0 ?
  • Max pressure in lower plain 56.634 KPas
  • Clearance 500.0 ?
  • Max pressure in lower plain 19.636 KPas

lt Lower plain bearing without recirculation
channelgt
lt Lower plain bearing with recirculation channelgt
37
Analysis result
Static characteristics
Part Without recirculation channel Without recirculation channel With recirculation channel With recirculation channel
Part Load capacity N Friction torque Nm Load capacity N Friction torque Nm
Lower thrust 3.36126e-001 4.95959e-005 3.37344e-001 4.95973e-005
Plain 1 2.68073e-006 2.84081e-008 3.05376e-006 2.84082e-008
Upper journal 1.82473e-001 3.12260e-005 1.82550e-001 3.12290e-005
Plain 3 9.45037e-006 2.84078e-007 9.45092e-006 2.84078e-007
Lower journal 1.48531e-001 2.83763e-005 1.48531e-001 2.83763e-005
Plain 5 5.13616e-008 2.84076e-008 6.72910e-008 2.84076e-008
Lower plain 1.13197e-001 5.39740e-008 9.59665e-002 5.39740e-008
38
Analysis result
Dynamic characteristics
  • Stiffness coefficient comparison

Without recirculation channel Without recirculation channel Without recirculation channel Without recirculation channel With recirculation channel With recirculation channel With recirculation channel With recirculation channel
Total system Upper journal Lower journal Thrust part Total system Upper journal Lower journal Thrust part
Kxx 4.9937e005 2.6482e005 2.3455e005 0.0000e000 5.0575e005 2.7123e005 2.3453e005 0.0000e000
Kyy 5.0945e005 2.7686e005 2.3259e005 0.0000e000 5.0132e005 2.6875e005 2.3258e005 0.0000e000
Kzz 6.3276e004 0.0000e000 0.0000e000 6.3276e004 8.1083e004 0.0000e000 0.0000e000 8.1083e004
  • Damping coefficient comparison

Without recirculation channel Without recirculation channel Without recirculation channel Without recirculation channel With recirculation channel With recirculation channel With recirculation channel With recirculation channel
Total system Upper journal Lower journal Thrust part Total system Upper journal Lower journal Thrust part
Cxx 2.6797e003 1.4937e003 1.1860e003 0.0000e000 2.7101e003 1.5241e003 1.1859e003 0.0000e000
Cyy 2.6909e003 1.4998e003 1.1910e003 0.0000e000 2.7219e003 1.5309e003 1.1910e003 0.0000e000
Czz 1.8438e005 0.0000e000 0.0000e000 1.8438e005 1.0664e003 0.0000e000 0.0000e000 1.0664e003
39
Result and discussion
  • Coupled analysis vs. separate analysis
  • High pressure of the journal bearing is
    transmitted to the thrust bearing, which results
    in high pressure distribution in the thrust
    bearing in the coupled analysis.
  • It changes the load capacity and flying height of
    thrust bearing.
  • Half-Sommerfeld vs. Reynolds BC
  • Half-Sommerfeld BC overestimates the cavitation
    area, which underestimates the pressure, load
    capacity of the thrust bearing.
  • Reynolds BC describes the cavitation, load
    capacity of bearing realistically.
  • Micro Drive with recirculation channels
  • Recirculation channel allows the flow between the
    upper and lower thrust bearing, and it maintain
    the same pressure level between them
  • It decreases the pressure distribution of lower
    thrust bearing, which results in the small load
    capacity of lower thrust bearing

40
Future work
  • Get a feedback and verify the static and dynamic
    result from HYBAP v3.0 using various model
Write a Comment
User Comments (0)
About PowerShow.com