Title: Classical and Quantum Creep in Disordered Solids
1What are theorists most proud of? My answer
Universality
Depinning T! 0 v (E-Ec) ?, Tgt0 v T
?/? ? (E-Ec)? trel ?z ?/(z-?)1/(2-?)?
Non-equilibrium exponents universal ?0 Ec,
size of critical region non-universal High v
corrections follow from this
Creep v v0 exp-(E0/E) ?
?(D-22?e)/(2-?e) universal, Equlibrium
exponents (Bragg glass ?e0) v0,
E0.. non-universal
Works for domain walls, FLL, dislocation lines,
CDW?
2Example Creep of Magnetic Domain Wall
D1, ?2/3 (exact), ?D-22?
1/3 ??/(2-?)1/4 Lemerle et al. 1998
Other examples Dislocation in solids
Flux lines insuperconductors
3What are the assumptions?
- 1. ?(x)?0(1Q-1r ?)?1cos(Qx?(x))
?1gt0 everywhere ! Keep only ?1 term -
?
single valued, no dislocations - 2. H s dDx p2/2m c(r ?)2 ?i v(x-Ri)?(x)
v(x) short ranged - 3. If Coulomb interaction and anisotropy
important -
ck2! ck2c?k?2cdip(k??/a0)2/(1k2?2) - changes critical dimension to D3, exponents
trivial apart from logarithmic corrections - 4. neglect quantum fluctuations, probably OK
- 5. Weak pinning (but also strong pinning shows
asymptotically the same scaling behavior) - Ideal, random distribution of pinning
centers (no correlations!) - Strong pinning changes parameter dependence
of Ec, - 6. L gtgt LLarkin n-1/(4-d), not always true
in all directions, LltLLarkin no depinning
transition - 7. Overdamped equation of motion (no inertia,
will die out, but cross-over effects? - Generation of friction constant ? on
intermediate scales )