Magnetism in (Sr,Ca)RuO4 and FeAs-based superconductors - PowerPoint PPT Presentation

About This Presentation
Title:

Magnetism in (Sr,Ca)RuO4 and FeAs-based superconductors

Description:

Title: Magnetism in (Sr,Ca)RuO4 and FeAs-based superconductors Last modified by: Jeremy Carlo Created Date: 8/16/2006 12:00:00 AM Document presentation format – PowerPoint PPT presentation

Number of Views:156
Avg rating:3.0/5.0
Slides: 39
Provided by: www44Home
Category:

less

Transcript and Presenter's Notes

Title: Magnetism in (Sr,Ca)RuO4 and FeAs-based superconductors


1
The Magnetic Phase Diagram of (Sr,Ca)2(Ru,Ti)O4
Revealed by mSR
Jeremy P. Carlo jeremy.carlo_at_nrc.gc.ca
Columbia University Canadian Neutron Beam
Centre, National Research Council
June 2, 2010
2
Outline
  • Overview
  • Correlated electron materials
  • Magnetic order
  • Superconductors
  • The ?SR method
  • Local probe of magnetism
  • (Sr,Ca)2RuO4 Sr2(Ru,Ti)O4
  • Superconductivity
  • Magnetic Phase Diagram

3
Overview
  • Relation between magnetic order
    superconductivity
  • BCS Cooper pairs electron-phonon interaction
  • High-Tc magnetic fluctuations more important
  • Canonical cuprate phase diagram
  • Parent compound AF
  • Magnetic order close to SC dome

4
(No Transcript)
5
Overview
  • Ongoing questions
  • Behavior of different families of unconventional
    SCs?
  • Cuprates Heavy fermion SCs Organic SCs
  • Sr2RuO4 Fe pnictides etc.
  • How do magnetism / magnetic fluctuations relate?
  • Normal state behavior, M-I / structural links?
  • Holy Grail
  • What is the comprehensive theory of
    unconventional superconductivity?
  • Present Study

6
The ?SR method
  • Production of muons
  • Protons extracted from cyclotron/synchrotron
  • p low Z production target ? ? stuff
  • ? ? ? ??
  • parity violation beam is spin polarized
  • separate out positrons, etc.
  • collimate / steer beam to sample
  • Polarized muon sources
  • TRIUMF, Vancouver BC
  • PSI, Switzerland
  • ISIS, UK (pulsed)
  • KEK, Japan (pulsed)

7
(No Transcript)
8
Continuous-beam ?SR
  • Muon beam
  • Positive muons ?
  • Can rotate polarization
  • Insert muons one at a time
  • Come to rest
  • Interstitial sites
  • Near anions
  • Along bonds

9
Decay Asymmetry
Muon spin at decay
Detection ? ? e ??? ?e
e E / Emax normalized e energy
10
e detector U
incoming muon counter
sample
e
m
detector
time
D 2.5
e detector D
11
e detector U
incoming muon counter
sample
e
m
detector
time
D 2.5
e detector D
U 1.7
12
e detector U
incoming muon counter
sample
e
m
detector
time
D 2.5
e detector D
U 1.7
D 1.2
13
e detector U
incoming muon counter
sample
e
m
detector
time
D 2.5
e detector D
U 1.7
D 1.2
D 9.0
106-107 more
14
Histograms for opposing counters
asy(t) A0 Gz(t) ( baseline)
a
Total asymmetry 0.2-0.3
Muon spin polarization function
135.5 MHz/T
Represents muons in a uniform field
15
Field configurations
  • ZF-?SR
  • ?? sees field due to nearby moments
  • Spontaneous ordering?
  • Precession
  • Rapid relaxation

T-dependence (in-plane doping)
vs. out-of-plane doping
T-dependence (out-of-plane doping)
vs. in-plane doping
Example
(CuCl)LaNb2O7
La
NbO6
CuCl
16
Field configurations
Example
  • LF-?SR
  • ?? sees skewed local field distribution
  • Static order
  • Decoupling if Happl Bint
  • Dynamic order
  • No decoupling
  • Drift of 1/3 tail

H ??? initial muon spin
17
Field configurations
  • wTF-?SR
  • Calibration of baseline (a), total asymmetry (A0)
  • ?? sees
  • (mostly) applied field (paramagnetic state),
  • appl. internal fields (ordered state)

H ?? initial muon spin
Determine ordered, PM fractions
Example
18
Field configurations
  • (strong) TF-?SR
  • Order induced by applied field
  • Metamagnetism, etc.
  • Vortex lattice in Type-II SC
  • Rlx ? vlt?B2gt ? 1/?2 ? ns /m
  • ? penetration depth
  • ns /m superfluid density
  • Polyxtal samples distribution broadened
    Gaussian
  • gt Gaussian rlx
  • gt 1/?2
  • gt sf. density

H ?? initial muon spin
J. E. Sonier, 1998 2007
19
Srn1RunO3n1
RuO66
  • Ruddlesden-Popper series
  • n? SrRuO3 (113)
  • perovskite structure
  • Ferromagnetic, Tc ? 165K
  • n3 Sr4Ru3O10 (4-3-10)
  • multi-layered structure
  • FM, Tc ? 105K
  • n2 Sr3Ru2O7 (327)
  • quantum metamagnetism
  • FM, AF fluctuations
  • mag. ordering w/ Mn
  • n1 Sr2RuO4 (214)
  • Unconventional SC Tc ? 1.5K
  • Spin-triplet pairing, p-wave
  • isostructural to LBCO, LSCO

Sr
20
(Sr,Ca)RuO3 113
Past Work
  • n?
  • 3-D structure
  • Ca/Sr substitution
  • SrxCa1-xRuO3
  • isoelectronic doping
  • FM suppressed x ? 0.25
  • Phase separation, QPT

21
Sr2RuO4 214
Maeno et al. 1994
MacKenzie Maeno, 2003
Fermi surface
  • n1
  • SC state (Maeno et al. 1994)
  • Tc up to 1.5 K
  • NMR Spin-triplet pairing
  • TRSB (Luke et al. 1996) distinguish between
    p-wave states
  • Incommensurate spin fluctuations q (?0.6?/a,
    ?0.6?/a, 0)
  • Normal state 2-D Fermi liquid
  • Doping
  • Out-of-plane Ca on Sr site SrxCa2-xRuO4
  • In-plane Ti on Ru site Sr2Ru1-yTiyO4
  • Small doping on either site suppresses SC

Luke et al. 1996
22
Ca2RuO4
  • AF insulator, moment ?1.3?B
  • Competition between A- and B- type ordering
  • TN ? 110-150K
  • Ca doping induces Mott transition
  • Decreased bandwidth
  • Increased on-site Coulomb repulsion
  • ? Increased U/W
  • Ru-Ru in-plane dist gt Sr2RuO4
  • RuO6 flattening, tilting

23
Ca2-xSrxRuO4
Susceptibility _at_ 2K
M-I transition near x0.2 (I-II) Near x0.5
(II-III) Sharp increase in susceptibility
Correlations more FM-ish Low susc _at_ higher
x Old Picture Ordering at low x
only Antiferro. near x0 Susc. peak near
x0.5 Paramagnetic at higher x SC at
x2 ?SR Rapid relaxation observed 0.2 x
1.6 Peaks near x ? 0.5, 1.5 Ordered ground state
throughout!
Nakatsuji Maeno, 2000.
Nakatsuji Maeno, 2003.
24
Sr2Ru1-yTiyO4
  • y0 SC Sr2RuO4
  • lt0.2 Ti doping suppresses Tc
  • gt2.5 doping induces magnetic ground state
  • neutrons Braden et al. (2002)
  • Incommensurate AF in y0.09
  • q ? (0.3, 0.3, qz)
  • ?SR rapid relaxation with increasing y.

from MacKenzie et al. 2003
25
Experiments
  • Samples
  • (Ca2-xSrx)2RuO4 x 0.0, 0.2, 0.3, 0.5, 0.57,
    0.65, 0.9, 1.0, 1.4, 1.5, 1.6, 1.8,
    1.95
  • Sr2(Ru1-yTiy)O4 y 0.01, 0.03, 0.05, 0.09
  • single xtals from Kyoto U. (Maeno et al. or
    Tsukuba (Yoshida et al.
  • ZF- LF-mSR M20 (LAMPF) and/or M15 (DR)
  • DC Susceptibility ZFC, FC, H 50-100 G

Dilution fridge 15mK lt T lt 10K
He gas-flow cryo 1.7K lt T lt 300K
26
Ca2RuO4 ZF-?SR
Ca2RuO4
  • ?SR spectra
  • Sum of 2 frequencies

27
ZF-?SR Temperature Scans (Ca,Sr) system
28
ZF-?SR Temperature Scans (Ru,Ti) system
29
Edwards-Anderson order parameter
Uemura spin glass function (Uemura, 1985)
dynamic
static
?d
as root-exponential
Lorentzian Kubo-Toyabe

Field width
as a vQ
ld 4a2(1-Q)/n
Fluctuation rate
30
  • ZF Relaxation vs. Temp Magnetic ordering!

Define Rlx sqrt ( ?d2 as2 )
Fit to Rlx(T) R 1 (T/To)g
zoom
all
Ti only
Ca only
31
  • LF _at_ base temp decoupling ? static order

Fit to tanh(H/Ho)
Static ordering at base temp!
32
  • LF temp scans map out dynamics

33
  • Comparison of ZF LF field estimates

tanh(H/Ho)
R 1 (T/To)g
34
(No Transcript)
35
Adapted from Braden et al. (2002) Neutrons
Braden Muons present study
36
DC Susceptibility
Curie-Weiss
more AF
37
Old view
New View
38
Summary (Sr,Ca)2(Ru,Ti)O4

Past Sr2RuO4 p-wave SC Tc ? 1.5K, TRSB
magnetic fluctuations Sr2Ru1-yTiyO4 y ? 0.002
suppresses SC neutrons incommensurate AF y
0.09 Ca2RuO4 AF insulator TN ?
100-150K Sr2-xCaxRuO4 M-I transition x ?
0.2 susceptibility peak x ? 0.5
New Sr2-xCaxRuO4
muons magnetic order over almost entire range
x 0 commensurate AF, gone by x 0.2 peaks x
? 0.5 (FM-ish?), 1.5 (more AF) incommensurate AF
/ SDW ? need long-range magnetic probe!
Sr2Ru1-yTiyO4 muons rapid relaxation y
0.03 susc large negative ?w ? AF
Write a Comment
User Comments (0)
About PowerShow.com