Title: Introducci
1Introducción a la Espectroscopía Mössbauer
Introduction Mössbauer Effect
2An Accidental Discovery
- Discovered by Rudolf Mössbauer while working on
his thesis at the Max Planck Institute for
Medical Research in Heidelberg. - Noticed increased scattering in his gamma ray
spectrum of 191Ir at low temperatures - This went against classical predictions
- Published an article in Zeitschrift für Physik in
1958, marked the beginning of Mössbauer
spectroscopy - It was this discovery earned him a Nobel Prize in
Physics in 1961
3Espectroscopía Mössbauer
4Espectroscopía Mössbauer
5Espectroscopía Mössbauer
6Espectroscopía Mössbauer
Relative probabilities for ? transition with
simultaneous excitation of oscillator quanta
7Espectroscopía Mössbauer
Fraction of recoilless transitions
8Espectroscopía Mössbauer
T 88K
Experiment carried out to test the validity of
the prediction
A sort of reversal of the Moon experiment.
The width of the lines were determined by the
thermal motion of the nuclei.
Moon compensated by Doppler shift the
recoil-energy losses.
Mössbauer destroyed the fulfilled resonance
condition through the application of a relative
velocity.
Line widths sharper for four orders of magnitude.
9Espectroscopía Mössbauer
Since its discovery in 1957 Mössbauer effect was
applied to numerous problems in science and
technology
Mössbauer spectroscopy brings information on
- Probe electronic state
- Local electronic charge density
- Local electric field gradient
- Local magnetic field
And therefore on phases present, defects,
disorder, role of impurities, surface effects,
etc..
10Espectroscopía Mössbauer
It is defined as recoilless resonant gamma ray
absorption. Previous experiments tried to
observe this effect with gases but because of
recoil the experiments failed Performed on solid
state materials no recoil Low temperatures are
needed to limit both the recoil energy and
thermal noise Most prominent use is in mineralogy
and geology
11Espectroscopía Mössbauer
The Mössbauer experiment
v (mm/s)
? rays
Radioactive Source (57Fe)
?-ray detector
Absorber (57Fe)
counts
V(mm/s)
v
12Decay scheme of 57Fe
13Hyperfine splitting of nuclear levels
e
f
Isomer shift ??
Quadrupole splitting ?
Magnetic hyperfine field splitting B
B ?(?)
14Interacción electrostática.
Ee,N ???N(r) ?e(R)dr3dR3/r-R ???N(r)
Ve(R)dr3dR3
E0 ? eZN Ve(0) gt ?E0 0
Vzz???e(R)(3cos2?-1)dR3
15Interacción electrostática.
16Magnetic hyperfine splitting of nuclear levels
17Mössbauer Spec tra
Observed Effect Illustration Observed Spectrum
Isomer Shift Interaction of the nuclear charge distribution with the electron cloud surrounding the nuclei in both the absorber and source.
Zeeman Effect (Dipole Interaction) Interaction of the nuclear magnetic dipole moment with the external magnetic field at the nucleus.
Quadrupole Splitting Interaction of the nuclear electric quadrupole moment with the EFG at the nucleus
18Mössbauer Spectrum
Mössbauer Spectra
Hyperfine field (B)
Isomer shift (?)
Area
19Intensidad de líneas de absorción Mössbauer
z 4 sin2(?) / (1 cos2(?))
3 z 1 1 z 3
?
k
?
M
20Mössbauer Spectra
21Mössbauer Spectra
22Instrumentation
Source and absorber with the same
Mössbauer isotope Detector -scintillator
-proportional -solid-state High
voltage Pre-Amp Amplifier MS Computer/software
23Doppler Energy
E? E0 ?
? v E0/c
24Doppler Energy
25Mössbauer resonant absorption
e
?
E0
E0
?
?
f
E0-ER
E0ER
E0
pR
p?
pR
ER
E? E0-ER
E? E0ER
ER
??10-8 eV
ER?10-3 eV!!
ERpR2/2MN
26Jumping the boat
27(No Transcript)
28Ejemplos
29Spectra
30Ferromagneto Débil
31Ferrimagneto
32Paramagneto
Antiferromagneto
33Fe3Si
Ferromagneto
Paramagneto
34Mars Surface Spectrum
35(No Transcript)
36(No Transcript)
37Mössbauer Periodic Table
38(No Transcript)
39(No Transcript)