Title: wuxb@bac.pku.edu.cn
1????????????????
- ???
- (????????)
- wuxb_at_bac.pku.edu.cn
2Content
- Introduction quasars in large sky surveys
- Photometric redshifts of quasars in SDSS
- How to find high-z quasars
- Discussion BATC LAMOST...
31. Introduction
- Originally discovered in radio survey (3C) in
1950s first identified as star-like optical
sources with emission lines in 1963 Maarten
Schmidt (1963) realized the redshift of 3C 273
(z0.158) - First named simply as quasi-stellar radio
sources, shorten to quasars by H.-Y. Chiu(???)
(1964), accepted by ApJ in 1970 - More than 100,000 discovered the largest
redshift is 6.4 (Fan(???), et al. 2003)
4????????????????? 1963?Maarten Schmidt????????????
?H??????????
Maarten Schmidt
???3C 273????????0.16
5(No Transcript)
6Examples of quasars discovered with the largest
optical telescope (2.16m) in China (Wu, Bade
Beckmann 1999, AA, 347, 63)
7Spectra of three most distant quasars (Fan et al.
2003)
8- Large Optical Sky Quasar Surveys
- Palomar-Green (PG) Bright Quasar Survey (BQS)
Blt16, 10000 deg2, 120 Quasars (7) - Large Bright Quasar Survey (LBQS) Blt17.5, 103
quasars - 2dF 200 deg2, U-Vlt-0.3, 2.6 104 quasars
- Sloan Digital Sky Survey(SDSS) eventual 10000
deg2, ugriz selection, 105 quasars - Data Release 5 (2006) Spectroscopic area 5740
deg2. - 79,394 Quasars (redshift lt2.3)
- 11,217 Quasars (redshift gt2.3)
9Understanding the distribution and evolution of
quasars
10The first quasar and the cosmic reionization
Detection of A Complete Gunn-Peterson Trough
VLT observation
High-redshift quasars probe the end of
reionization epoch
11Physics Model for the Central Engine of Quasars
- Supermassive black hole
- Accretion disk
- Broad line region
- Dusty torus
- Narrow line region
- Jet
122. Photometric redshifts of quasars in SDSS
- Sloan Digital Sky Survey I
- Photometry 3 x 108 objects
- Limiting magnitudes at the detection limit, S/N
51 - Spectroscopy gt106 objects (106 galaxies 105
quasars) - Galaxies r lt17.77 Quasars i lt19.1
- Only photometric redshifts for fainter objects
13Spectroscopy The best way to determine the
redshift of quasars, though not always possible,
esp. for fainter quasars
14Photometric Systems of SDSS
15SDSS composite quasar spectrum (EDR 2200 quasars)
16Predicted magnitude and color of quasars
- Quasar spectrum f(?), SDSS transmission
efficiency s(?) (u,g,r,i,z)
17Comparison with the data of 18678 quasars in SDSS
DR1
18Photometric redshift determinations
- Chi2 minimization
- Using 4 colors for zlt3.6 and 3 colors for zgt3.6
(Ly? moves out of u band)
19Comparison of photo-z with spectroscopic-z for
18678 SDSS DR1 quasars
68 with ?zlt0.2
20Examples of wrong photometric redshifts
21Improvements on photo-z
- More composite quasar spectra
- Red quasars, BAL quasars, radio-loud/quiet
- More photometric data in other bands
- UV(GALEX), near-IR(JHK),
- VO application
223. How to find high-z quasars
- Separate quasars from stars
- Using quasar colors to select hi-z quasar
candidates - Spectroscopic identifications, usually with huge
ground-based telescopes
23Location difference of quasars stars in
color-color diagram
quasars
stars
24Predicted colors of quasars, galaxies and stars
in SDSS system, Wu, Zhang Zhou (2004)
Quasars with zgt3.5
254. Discussion
- BATC Beijing-Arizona-Taipei-Connecticut Survey
- 60/90 Schmidt telescope
- 15 intermediate-band filters covering 3200-10000A
- FOV 1 degree limiting magnitude V21
- Surveyed area gt100 degree2
26BATC filter systems
27Theoretical color-z relations of quasars in BATC
system Wu, Zhang Zhou (2004)
28Theoretical colors of quasars and stars in BATC
system, Wu, Zhang Zhou (2004)
29Theoretical colors of quasars, galaxies and stars
in BATC system, Wu, Zhang Zhou (2004)
30Selection criteria for quasar candidates with
zgt3.5 (for BATC)
31Possible applications to LAMOST?