Siggraph Course Mesh Parameterization: Theory and Practice - PowerPoint PPT Presentation

About This Presentation
Title:

Siggraph Course Mesh Parameterization: Theory and Practice

Description:

Title: Slide 1 Author: Steve Overby Last modified by: Kai Hormann Created Date: 1/26/2003 7:16:40 AM Document presentation format: On-screen Show Other titles – PowerPoint PPT presentation

Number of Views:120
Avg rating:3.0/5.0
Slides: 13
Provided by: steve1682
Category:

less

Transcript and Presenter's Notes

Title: Siggraph Course Mesh Parameterization: Theory and Practice


1
Siggraph CourseMesh Parameterization Theory
and Practice
  • Barycentric Mappings

2
Triangle Mesh Parameterization
  • triangle mesh
  • vertices
  • triangles
  • parameter mesh
  • parameter points
  • parameter triangles
  • parameterization
  • piecewise linear map

3
The Spring Model
  • replace edges by springs
  • fix boundary vertices
  • relaxation process
  • energy of spring between and
  • spring constant
  • spring length
  • total energy

4
Energy Minimization
  • interior vertices
  • s neighbours
  • overall spring energy
  • partial derivative

5
Energy Minimization
  • minimum of spring energy
  • for all interior points
  • is a convex combination of its neighbors
  • with weights

6
The Linear System
  • separation of variables
  • unknown parameter points fixed
  • linear system

7
The Linear System
  • solve system twice
  • for and coordinates of interior parameter
    points
  • matrix is
  • sparse
  • diagonally dominant
  • nonsingular
  • as long as all

8
Choice of Weights
  • uniform spring constants
  • ,
  • chordal spring constants
  • ,
  • no fold-overs for convex boundary
  • no linear reproduction
  • planar meshes are distorted

9
Choice of Weights
  • suppose is a planar mesh
  • specify weights such that
  • barycentric coordinates of
  • then solving
  • reproduces

10
Barycentric Coordinates
  • Wachspress coordinates
  • discrete harmonic coordinates
  • mean value coordinates

normalization
11
Example Pyramid
Wachspress
discrete harmonic
mean value
  • fold-overs for negative coordinates
  • affine combinations
    ,
  • numerically unstable if
  • mean value coordinates guaranteed to be positive

12
The Boundary Mapping
  • chordal parameterization around convex shape
  • circle
  • rectangle
  • projection into least squares plane
  • may lead to fold-overs
Write a Comment
User Comments (0)
About PowerShow.com