ACID-BASE SITUATIONS - PowerPoint PPT Presentation

About This Presentation
Title:

ACID-BASE SITUATIONS

Description:

Title: ACID-BASE SITUATIONS Author: Richard J Zahodnic Last modified by: Rick Zahodnic Created Date: 6/9/2005 8:58:06 PM Document presentation format – PowerPoint PPT presentation

Number of Views:159
Avg rating:3.0/5.0
Slides: 91
Provided by: RichardJ55
Category:

less

Transcript and Presenter's Notes

Title: ACID-BASE SITUATIONS


1
ACID-BASE SITUATIONS
2
Objectives
  • After todays presentation you will
  • List the primary causes of respiratory acidosis
  • List the primary causes of respiratory alkalosis
  • Given a set of electrolytes, determine the anion
    gap
  • List the primary causes of a metabolic acidosis
    with an increased anion gap
  • List the primary causes of a metabolic acidosis
    with a normal anion gap
  • List the primary causes of a metabolic alkalosis

3
ACID-BASE DISTURBANCES
4
Respiratory Disturbances
5
(No Transcript)
6
(No Transcript)
7
(No Transcript)
8
Metabolic Disturbances
9
Metabolic Acidosis
10
General Causes of Metabolic Acidosis
  • Failure of kidneys to excrete metabolic acids
    normally found in the body.
  • Formation of excess quantities of metabolic acids
    in the body.
  • Addition of metabolic acids to the body by
    ingestion or infusion of acids.
  • Loss of base from the body fluids.

11
Anion Gap
  • Two ways to evaluate
  • Na - Cl- - HCO3-
  • Normal is 6 to 12 mEq/L
  • Na K - Cl- - HCO3-
  • Normal is 10 to 16

12
Anion Gap
  • http//www.thedrugmonitor.com/acidbase.html

13
Increased Anion Gap
  • Greater than 20 Accumulation of Fixed Acids
  • NORMAL CHLORIDE LEVEL
  • MUD PILERS
  • Methanol
  • Uremia (Azotemic Renal Failure)
  • Elevated BUN/Creatinine
  • Diabetic Ketoacidosis
  • Paraldehyde (Formaldehyde and Toluene)
  • Isopropyl alcohol
  • Lactic (and Formic) Acidosis
  • Ethylene Glycol
  • Rhabdomyolysis
  • Salicylates

14
(No Transcript)
15
Normal Anion Gap
  • INCREASED CHLORIDE LEVEL LOSS OF BASE
  • Renal Tubular Acidosis
  • No reabsorption of HCO3-
  • Enteric Drainage Tubes
  • Small intestine drainage Large amounts of base
    in stool
  • Diarrhea
  • Urinary Diversion
  • Surgical alteration of ureters
  • Carbonic Anhydrase Inhibitors
  • Poor reabsorption of bicarbonate

16
Low Anion Gap
  • Look at albumin
  • Hypoalbuminemia causes a low anion gap.
  • Normal Albumin is 4.4 g/dL
  • For every 0.4 g/dL decrease in albumin, the anion
    gap will decrease by 1 mEq/L

Albumin (g/dL) Maximum Anion Gap (mEq/L)
4.4 16
4.0 15
3.6 14
3.2 13
2.8 12
17
(No Transcript)
18
Example of Extreme Compensation
  • On 2 L/min NC
  • pH 6.96
  • PaCO2 6.8 mm Hg
  • PaO2 158 mm Hg
  • HCO3- 1.5 mEq/L
  • BE -32.6 mEq/L

19
Metabolic Alkalosis
  • Most common acid-base abnormality?
  • Aggressive treatment of partially compensated
    respiratory acidosis?
  • Causes
  • Loss of Acid
  • Vomiting
  • NG Drainage
  • Gain of Alkali
  • Increased ingestion of alkaline substances
  • Excessive licorice ingestion
  • Hypokalemia

20
(No Transcript)
21
Advance Acid Base Interpretation
22
Classification vs. Interpretation
  • Classification Identification of acid-base
    disturbance and the causative element along with
    any compensation that may be present.
  • Interpretation Use of calculations to determine
    if compensation is appropriate or if multiple
    disorders are present.

23
Compensation
  • There is no such thing as overcompensation.
  • This usually means there is a second primary
    disorder at work in the opposite direction.
  • If there is no compensation OR the compensation
    is less than expected
  • Compensation is not possible because the
    compensatory organ is not functioning
    appropriately.
  • There has not been sufficient time for
    compensation (renal).
  • Another primary disorder is present and is
    working in the same direction.

24
PaCO2 pH HCO3-
RESPIRATORY ACIDOSIS RESPIRATORY ACIDOSIS RESPIRATORY ACIDOSIS RESPIRATORY ACIDOSIS
Acute ?10 ? 0.08 ? 1 mEq/L
Chronic ?10 ? 0.03 ? 4 mEq/L
RESPIRATORY ALKALOSIS RESPIRATORY ALKALOSIS RESPIRATORY ALKALOSIS RESPIRATORY ALKALOSIS
Acute ?10 ? 0.08 ? 2 mEq/L
Chronic ?10 ? 0.03 ? 5 mEq/L
HCO3- pH PaCO2
METABOLIC ACIDOSIS ? 1 ? 0.015 ? 1.2
METABOLIC ALKALOSIS ?1 ?0.015 ? 0.7
25
Degree of Variation
  • Allow for some degree of variation as follows
  • pH 0.03
  • PaCO2 5 mm Hg

26
Oakes Approach
  • Primary Problem (Acidemia or Alkalemia)
  • Primary Cause
  • CO2
  • HCO3-
  • Compensation
  • Initial Classification (Technical and Functional)
  • Determine extent of compensation and the presence
    of other abnormalities
  • Determine Anion Gap for metabolic acidemia
  • Determine Oxygenation
  • Assess Patient
  • Check for Accuracy
  • Final Interpretation

27
Factors That May Complicate Acid-Base
Determination
  • Chronic Lung Disease
  • Chronic Renal Disease
  • Therapeutic interventions
  • Mixed Acid-Base Problems

28
COPD
  • Typical picture is fully compensated, respiratory
    acidosis.
  • pH 7.38
  • PaCO2 55 mm Hg
  • HCO3- 31 mEq/L
  • BE 5 mEq/L
  • PaO2 55 mm Hg
  • Lets go through the process.

29
7.38, 55, 31
  • Acidosis
  • CO2 is elevated, so there is a respiratory
    cause.
  • HCO3- is out of normal range, but is not the
    cause.
  • The body is compensating.
  • Technical Classification Fully compensated
    respiratory acidosis.
  • Functional Classification Chronic respiratory
    acidosis.

30
7.38, 55, 31
  • Change in CO2 15 torr
  • Change in pH -0.02
  • Change in HCO3- 7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr 55
HCO3- 24 mEq/L
31
7.38, 55, 31
For every 10 torr change in PaCO2 there is a
0.03 change in pH. pH D (1.5 x
.03)0.045 7.40-0.0457.36
  • Change in CO2 15 torr
  • Change in pH -0.02
  • Change in HCO3- 7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr 55
HCO3- 24 mEq/L
32
7.38, 55, 31
For every 10 torr change in PaCO2 there is a
0.03 change in pH. pH D (1.5 x
.03)0.045 7.40-0.0457.36
  • Change in CO2 15 torr
  • Change in pH -0.02
  • Change in HCO3- 7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.36
PaCO2 40 torr 55
HCO3- 24 mEq/L
33
7.38, 55, 31
For every 10 torr change in PaCO2 there is a 4
mEq/L change in HCO3-. HCO3- D (1.5 x
4)6 24630 mEq/L
  • Change in CO2 15 torr
  • Change in pH -0.02
  • Change in HCO3- 7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.36
PaCO2 40 torr 55
HCO3- 24 mEq/L
34
7.38, 55, 31
For every 10 torr change in PaCO2 there is a 4
mEq/L change in HCO3-. HCO3- D (1.5 x
4)6 24630 mEq/L
  • Change in CO2 15 torr
  • Change in pH -0.02
  • Change in HCO3- 7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.36
PaCO2 40 torr 55
HCO3- 24 mEq/L 30
35
7.38, 55, 31
Actual HCO3- (31) doesnt match the predicted
change in HCO3-, so there must be an underlying
metabolic alkalosis superimposed on the
compensation.
  • Change in CO2 15 torr
  • Change in pH -0.02
  • Change in HCO3- 7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.36
PaCO2 40 torr 55
HCO3- 24 mEq/L 30 31
36
7.38, 55, 31
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (1 x .015)
0.150.2 7.36 0.2 7.38
  • Change in CO2 15 torr
  • Change in pH -0.02
  • Change in HCO3- 7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.36
PaCO2 40 torr 55
HCO3- 24 mEq/L 30 31
37
7.38, 55, 31
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (1 x .015)
0.150.2 7.36 0.2 7.38
  • Change in CO2 15 torr
  • Change in pH -0.02
  • Change in HCO3- 7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.36 7.38
PaCO2 40 torr 55
HCO3- 24 mEq/L 30 31
38
7.38, 55, 31
  • Change in CO2 15 torr
  • Change in pH -0.02
  • Change in HCO3- 7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.36 7.38
PaCO2 40 torr 55
HCO3- 24 mEq/L 30 31
39
COPD
  • So our final interpretation is a fully
    compensated, respiratory acidosis with a
    secondary metabolic alkalemia.
  • pH 7.38
  • PaCO2 55 mm Hg
  • HCO3- 31 mEq/L
  • BE 5 mEq/L
  • PaO2 55 mm Hg
  • This may be due to hypochloremia and hypokalemia
    associated with steroids and diuretics.

40
COPD Relative Hyperventilation
  • If the patient below develops a hypoxemic episode
    (e.g. pneumonia), the resulting hypoxemia may
    cause the patient to hyperventilate, the PaCO2 to
    return to normal, and a metabolic alkalosis to
    be diagnosed.
  • This is often seen when first starting the
    patient on BiPAP or mechanical ventilation

pH 7.38 PaCO2 55 mm Hg HCO3- 31 mEq/L BE 5
mEq/L PaO2 55 mm Hg
pH 7.52 PaCO2 40 mm Hg HCO3- 31 mEq/L BE 5
mEq/L PaO2 50 mm Hg
Solution is to only correct the PaCO2 to 52 mm Hg
41
COPD with Lactic Acidosis
  • COPD Reduced Cardiac Output Cellular hypoxia
    and Lactic Acidosis
  • Dont be fooled by normal ABGs

pH 7.38 PaCO2 40 mm Hg HCO3- 24 mEq/L BE 1
mEq/L PaO2 44 mm Hg
pH 7.38 PaCO2 55 mm Hg HCO3- 31 mEq/L BE 5
mEq/L PaO2 55 mm Hg
Loss of HCO3- due to lactic acidosis.
42
Chronic Renal Failure
  • Chronic renal failure can distort ABG results.
  • Renal ability to manipulate HCO3-, electrolyte
    and fluid levels is impaired.
  • Always evaluate with a metabolic acidosis as a
    possible cause.

43
Therapeutic Interventions
  • Multiple therapeutic interventions can affect
    acid-base balance
  • Diuretics
  • Steroids
  • Electrolytes
  • Oxygen
  • Sodium Bicarbonate
  • Mechanical Ventilation

44
Lets try another
  • Interpret this ABG
  • pH 7.44
  • PaCO2 18 mm Hg
  • BE -12 mEq/L
  • HCO3- 12 mEq/L
  • PaO2 64 mm Hg

45
7.44, 18, 12
  • Normal, but on alkalotic side.
  • CO2 is reduced, so there is a respiratory cause.
  • HCO3- is out of normal range, but is not the
    cause as a lowered HCO3- would not cause an
    alkalosis.
  • The body is compensating.
  • Technical Classification Fully compensated
    respiratory alkalosis.
  • Functional Classification Chronic respiratory
    alkalosis.

46
7.44, 18, 12
  • Change in CO2 -22 torr
  • Change in pH 0.04
  • Change in HCO3- -12 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr 18
HCO3- 24 mEq/L
47
7.44, 18, 12
For every 10 torr change in PaCO2 there is a
0.03 change in pH. pH D (2.2 x
.03)0.066 7.400.0667.47
  • Change in CO2 -22 torr
  • Change in pH 0.04
  • Change in HCO3- -12 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr 18
HCO3- 24 mEq/L
48
7.44, 18, 12
For every 10 torr change in PaCO2 there is a
0.03 change in pH. pH D (2.2 x
.03)0.066 7.400.0667.47
  • Change in CO2 -22 torr
  • Change in pH 0.04
  • Change in HCO3- -12 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.47
PaCO2 40 torr 18
HCO3- 24 mEq/L
49
7.44, 18, 12
For every 10 torr change in PaCO2 there is a 5
mEq/L change in HCO3-. HCO3- D (2.2 x
5)11 24-1113 mEq/L
  • Change in CO2 -22 torr
  • Change in pH 0.04
  • Change in HCO3- -12 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.47
PaCO2 40 torr 18
HCO3- 24 mEq/L
50
7.44, 18, 12
For every 10 torr change in PaCO2 there is a 5
mEq/L change in HCO3-. HCO3- D (2.2 x
5)11 24-1113 mEq/L
  • Change in CO2 -22 torr
  • Change in pH0.04
  • Change in HCO3- -12 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.47
PaCO2 40 torr 18
HCO3- 24 mEq/L 13
51
7.44, 18, 12
Actual HCO3- (12) doesnt match the predicted
change in HCO3-, so there must be an underlying
metabolic acidosis superimposed on the
compensation.
  • Change in CO2 -22 torr
  • Change in pH 0.04
  • Change in HCO3- -12 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.47
PaCO2 40 torr 18
HCO3- 24 mEq/L 13 12
52
7.44, 18, 12
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (1 x .015)
0.150.2 7.47 - 0.2 7.45
  • Change in CO2 -22 torr
  • Change in pH 0.04
  • Change in HCO3- -12 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.47
PaCO2 40 torr 18
HCO3- 24 mEq/L 13 12
53
7.44, 18, 12
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (1 x .015)
0.150.2 7.47 - 0.2 7.45
  • Change in CO2 -22 torr
  • Change in pH 0.04
  • Change in HCO3- -12 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.47 7.45
PaCO2 40 torr 18
HCO3- 24 mEq/L 13 12
54
7.44, 18, 12
The predicted pH of 7.45 is within the degree of
variation of 0.03 for pH.
  • Change in CO2 -22 torr
  • Change in pH 0.04
  • Change in HCO3- -12 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.47 7.45
PaCO2 40 torr 18
HCO3- 24 mEq/L 13 12
55
Interpretation
  • Fully compensated respiratory alkalosis with
    simultaneous metabolic acidosis.

56
Mixed Acid-Base Disturbances
  • Sometimes a simple compensatory mechanism isnt
    the reason for the normalized acid-base status.
  • If two opposing problems co-exist (ARF causing
    metabolic acidosis and pain causing respiratory
    alkalosis), you may have what looks like one
    compensating for the other.

57
  • Interpret this ABG
  • pH 7.38
  • PaCO2 20 mm Hg
  • HCO3- 17 mEq/L
  • PaO2 89 mm Hg

58
7.38, 20, 17
  • Normal, but on acidotic side.
  • CO2 is reduced, which would not cause an
    alkalosis.
  • HCO3- is reduced and would cause an alkalosis.
  • The body is compensating.
  • Technical Classification Fully compensated
    metabolic acidosis.
  • Functional Classification Metabolic acidosis.

59
7.38, 20, 17
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (7 x
.015)0.105 7.40-0..1057.30
  • Change in CO2 -20 torr
  • Change in pH -0.02
  • Change in HCO3- -7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr
HCO3- 24 mEq/L 17
60
7.38, 20, 17
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (7 x
.015)0.105 7.40-0.1057.30
  • Change in CO2 -20 torr
  • Change in pH -0.02
  • Change in HCO3- -7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.30
PaCO2 40 torr
HCO3- 24 mEq/L 17
61
7.38, 20, 17
The calculated change in pH (7.30) differs from
the actual measured pH, so there must be some
additional acid-base disturbance.
  • Change in CO2 -20 torr
  • Change in pH -0.02
  • Change in HCO3- -7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.30
PaCO2 40 torr
HCO3- 24 mEq/L 17
62
7.38, 20, 17
For every 1 mEq/L change in HCO3- there is a 1.2
change in PaCO2. PaCO2 D (7 x
1.2)8.4 40-8.431.632
  • Change in CO2 -20 torr
  • Change in pH -0.02
  • Change in HCO3- -7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.30
PaCO2 40 torr
HCO3- 24 mEq/L 17
63
7.38, 20, 17
The calculated change in PaCO2 (32) differs from
the actual measured PaCO2, so there must be a
respiratory disturbance present.
  • Change in CO2 -20 torr
  • Change in pH -0.02
  • Change in HCO3- -7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.30
PaCO2 40 torr 32
HCO3- 24 mEq/L 17
64
7.38, 20, 17
The difference between the calculated change in
PaCO2 (32) and the actual PaCO2 (20), indicates
that there must be a respiratory disturbance
present.
  • Change in CO2 -20 torr
  • Change in pH -0.02
  • Change in HCO3- -7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.30
PaCO2 40 torr 31.6 20
HCO3- 24 mEq/L 17
65
7.38, 20, 17
For every 10 torr change in PaCO2 there is a 0.08
change in pH. pH D (1.2 x .08)0.096 7.30.0967
.396
  • Change in CO2 -20 torr
  • Change in pH -0.02
  • Change in HCO3- -7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.30
PaCO2 40 torr 31.6 20
HCO3- 24 mEq/L 17
66
7.38, 20, 17
The predicted pH is within the level of
variability of 0.03 units.
  • Change in CO2 -20 torr
  • Change in pH -0.02
  • Change in HCO3- -7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.30 7.40
PaCO2 40 torr 31.6 20
HCO3- 24 mEq/L 17
67
Interpretation
  • Mixed metabolic acidosis and simultaneous
    respiratory alkalosis.

68
Can you have a triple disorder?
69
Anion Bicarbonate Gaps
  • Anion Gap Na - Cl- - HCO3-
  • Normal value is 6 to 12
  • Above 20 considered High
  • Bicarbonate Gap HCO3- (AG-12)
  • Normal is 20 to 28 AG Metabolic Acidosis
  • Less than 20 AG Metabolic Acidosis Non-AG
    Metabolic Acidosis
  • Greater than 28 AG Metabolic Acidosis
    Metabolic Alkalosis

70
7.52, 30, 21
  • Alkalemia.
  • CO2 is reduced, which would cause an alkalosis.
    Primary respiratory alkalosis.
  • HCO3- is reduced and would not cause an
    alkalosis.
  • The body is compensating (HCO3- decreasing)
  • Technical Classification Partially compensated
    respiratory alkalosis.
  • Functional Classification Chronic respiratory
    alkalosis.

71
7.52, 30, 21
For every 10 torr change in PaCO2 there is a 0.03
change in pH. pH D (1 x .03)0.03 7.40.037.43
  • Change in CO2 -10 torr
  • Change in pH 0.12
  • Change in HCO3- -3 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr 30
HCO3- 24 mEq/L
72
7.52, 30, 21
For every 10 torr change in PaCO2 there is a 0.03
change in pH. pH D (1 x .03)0.03 7.40.037.43
  • Change in CO2 -10 torr
  • Change in pH 0.12
  • Change in HCO3- -3 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43
PaCO2 40 torr 30
HCO3- 24 mEq/L
73
7.52, 30, 21
The calculated change in pH (7.43) differs from
the actual measured pH, so there must be some
additional acid-base disturbance.
  • Change in CO2 -10 torr
  • Change in pH 0.12
  • Change in HCO3- -3 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43
PaCO2 40 torr 30
HCO3- 24 mEq/L
74
7.52, 30, 21
For every 10 torr change in PaCO2 there is a 5
mEq/L change in HCO3-. HCO3- D (1 x
5)5 24-519 mEq/L
  • Change in CO2 -10 torr
  • Change in pH 0.12
  • Change in HCO3- -3 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43
PaCO2 40 torr 30
HCO3- 24 mEq/L
75
7.52, 30, 21
For every 10 torr change in PaCO2 there is a 5
mEq/L change in HCO3-. HCO3- D (1 x
5)5 24-519 mEq/L
  • Change in CO2 -10 torr
  • Change in pH 0.12
  • Change in HCO3- -3 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43
PaCO2 40 torr 30
HCO3- 24 mEq/L 19
76
7.52, 30, 21
The calculated change in HCO3-differs from the
actual measured HCO3-, so there must be some
additional acid-base disturbance.
  • Change in CO2 -10 torr
  • Change in pH 0.12
  • Change in HCO3- -3 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43
PaCO2 40 torr 30
HCO3- 24 mEq/L 19 21
77
7.52, 30, 21
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (2 x
.015)0.03 7.430.037.46
  • Change in CO2 -10 torr
  • Change in pH 0.12
  • Change in HCO3- -3 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43
PaCO2 40 torr 30
HCO3- 24 mEq/L 19 21
78
7.52, 30, 21
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (2 x
.015)0.03 7.430.037.46
  • Change in CO2 -10 torr
  • Change in pH 0.12
  • Change in HCO3- -3 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43 7.46
PaCO2 40 torr 30
HCO3- 24 mEq/L 19 21
79
7.52, 30, 21
Note that the pH still is not fully explained by
the change in bicarbonate due to compensation.
Some additional metabolic alkalosis must be
present.
  • Change in CO2 -10 torr
  • Change in pH 0.12
  • Change in HCO3- -3 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43 7.46
PaCO2 40 torr 30
HCO3- 24 mEq/L 19 21
80
Look to Anion Bicarbonate Gaps
  • Na 142 mEq/L
  • Cl- 98 mEq/L
  • AG Na - Cl- - HCO3- 142-98-21 23
  • This means we have an Anion Gap Metabolic
    Acidosis
  • BG HCO3- (AG-12) 21 (23-12) 2111 32
  • AG Metabolic Acidosis Metabolic Alkalosis

81
Interpretation
  • Primary respiratory alkalosis and metabolic
    acidosis and metabolic alkalosis.
  • Huh?
  • An example would be a patient with pneumonia who
    is hyperventilating secondary to hypoxemia, who
    also has azotemic renal failure and has
    hypokalemia secondary to aggressive diuretic
    therapy.

82
7.52, 30, 21
  • Change in CO2 -10 torr
  • Change in pH 0.12
  • Change in HCO3- -3 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr 30
HCO3- 24 mEq/L
83
Can you have a quadruple disorder?
84
Acid-Base Map
  • Fig 14-1

85
pH 7.35 PaCO2 60 mm Hg
86
pH 7.60 PaCO2 30 mm Hg
87
pH 7.38 PaCO2 70 mm Hg
88
pH 7.35 PaCO2 30 mm Hg
89
Fun reading
  • Last part of Chapter 14 in Malley.

90
7.43, 34, 22
  • Change in CO2 15 torr
  • Change in pH -0.02
  • Change in HCO3- 7 mEq/L

BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr 55
HCO3- 24 mEq/L
Write a Comment
User Comments (0)
About PowerShow.com