Title: ?????? ??(Option) - ????? ????-
1?????? ??(Option)- ????? ????-
- ???? ??? ??
- ? ? ? (johnshin_at_kfb.co.kr)
2Prologue
- ? Forwards, futures, ? FX swaps? ?? ??? ???
???????. - ? ???? ??? ?? ?? ??? ????? ?? ????? ???? ????.
- 1?, 2? ???? ??? ????? 02? 8? 15? ??? ???????.
- ???? URL http//vols.com.ne.kr/fxkorea.html
- ????? ????. - ??? ?-
3????(Currency Options)
4Introductions to Option
- Option Market
- ?? ??? ??? ??? ?? ??? ??? ?? ?? ??? ? ?? ??? ??
- ???? ???? ??? ??/??/??/????? ?? ??? ?? ??? ???.
- ?? ????(holder, long) ? ??? ??? ??, ????
(writer, short)??? ???.
5Introductions to Option (Contd)
- Plain Vanilla Option? Risk Profile
6Introductions to Option (Contd)
- Glossary
- Call Options Give the holder (buyer) the right,
but not the obligation, to BUY the underlying
asset from the writer (seller) by a given time at
a given price - Put Options Give the holder the right, but not
the obligation, to SELL the underlying asset to
the writer by a given time at a given price - Maturity The given time is called the
Expiration or Maturity date - Strike The given price is called the Strike
or Exercise price - European An option that can be exercised only
at the end of its life - American An option that can be exercised at
any time during its life. - Premium Option contract is a kind of financial
assets, and its price movement depends on its
undelying assets.Therefore, premium is the price
of financial assets.That is, the price paid by
the buyer of the options - Option Value Intrinsic Value Time Value
- 1)Intrinsic Value Profit an Option Holder would
make from exercising the option immediately,
i.e., Difference Between Exercise Price and Price
of the Underlying - 2)Time Value Value of Being able to Postpone
Decision to Exercise. This is, the expected
increase in the options intrinsic value in the
remaining life of the option.
7Introductions to Option (Contd)
- Why Option?
- ???? ?? ????? ??
- ????? ?? ??????
- ?? ???? ?? ??
- ?????? ????? ????
- ?? vs. ??? Flexibility
- The forward contract exactly matches the existing
FX position There is neither risk of loss nor
potential for gain. The option locks in the
worst case at the premium paid and leaves the
option holder with a potential unlimited gain in
case of favorable spot moves.
8CASE1 ????? ??? Hedge
- S??? ?????? 3??? ??? U?? ????? ?? ????? Hedge???
??, ??? U/Won??? ??? ?? ???? ??? ???? ???? ??
??? ??? ????? ???? ??. ???? ?? ??(Won??)? ????
????? ?? ??? ?? ??? ??? ? ?? Hedge ??? ????? - ? ?? ?? Hedge? ??? ?? Risk Profile??
9CASE1 ????? ??? Hedge (Contd)
- Buy U-Call (Won-Put) Option
10CASE2 ??? ????? Hedge
- D ??? ????? ??? ??? ???? ??? ??? ????? ??. ?????
????? 1??? ?? FFR? ???? D ??? ???? ??? ??? 50
????. ??? Margin? ???? ??? ????? Hedge??? ???
??? ??? bidding process? ?? 3??? ???. - D ?? ???? ????? Hedge? ?? ?? ????? ?? ?????
Hedge? ???? ???? ??? ?? ???? ?? ????? ?? ?? ????. - D ??? ??? ??? ??? ????? ????? Hedge? ?????
- ?? ??? ???? ????? Hedge? ? ?? ????
11CASE2 ??? ????? Hedge (Contd)
- ??? Hedge? ???
- 50? ????? ?? ????? 50 ??? Hedge? ?????? ???,
- ??? ??? ?? ?? ??? ??? ?? 0
- ?? 100? ??? ?? (???? Hedge??? ?? ??)
- ????? ?? Hedge
- U-Call(Ffr-Put) Option
-
12CASE3 Zero-cost Options
- Zero-cost Options
- ??? ??? ??? ???? Hedge
- ??? ??? Premium? ??
- ??? ??? ??/?????? Zero-premium ??? ?? ??
- ????? ?? ?? Premium ????? ?? ?? Premium
- ??? ????? ??? ??? Risk Profile? ??? ? ??
Flexibility? ?? - --gt ?? ???? Financial Engineering Tool
13Introductions to Option (Contd)
- Option? ??
- Option Value ???? (Time Value) ???? (
Intrinsic Value) - Value of (Call) Option at Maturity C max ( S
- X, 0 )
14Introductions to Option (Contd)
- Intrinsic Value(????)
- ????(S-X)? ????? ?????? ????.
- ????? ????? 0? ??? ??.
15Introductions to Option (Contd)
- Time Value(????)
- ????? ?????? ????? ? ????.
- ?, Time value Option Value-Intrinsic Value.
????? ??? ???? ???? ??? ?? Premium? ???? ???.
????? ATM?? ??? ??. - ?? ?? 1?? 800? ?? 2,000?? ? ????
16Introductions to Option (Contd)
- Option?? ????
- Spot price (S)
- Strike price (X)
- Time to expiration ( Maturity, say 182days...)
- Volatility of underlying (?)
- Risk-free interest rate (r, rf)
- For USD/KRW, r KRW, rf USD
- Option?? ????? ????
- CALL PUT
- ???? (S) -
- ???? (X) -
- Volatility (?)
- Interest Rate (r) /-
- Time to Mature (T)
17Volatility
- Volatility? ??
- High volatility means you have higher
change(probability) to win the option at the
maturity, so, other things being equal, the
premium also much expensive.
18Volatility (Contd)
- High volatility equals high premium but nobody
can calculate the future volatility - Types of volatilities
- Futures volatility
- Historical volatility
- Implied volatility
- Volatility smile
- Risk Reversal
- Volatility smile is not always uniform in both
directions. - To reflect the preference for upside or downside
protection
??
??
??
Historical Vol.
Implied Vol.
Futures Vol.
19Volatility (Contd)
- Volatility smile
- The Black Scholes model used to price options
assumes that future spot rates are lognormally
distributed around the forward rate (A variable
with a lognormal distribution has the property
that its natural logarithm is normally
distributed). In reality, extreme outcomes are
more likely than the lognormal distribution
suggests - The BS model underestimates the
probability of strong directional spot movements
and therefore undervalues options with low deltas - 1st Adjustment Traders routinely compensate for
these differences by adjusting the
at-the-money-forward vols for out-of-the-money
strikes to more accurately reflect the perceived
risk The manner in which traders adjust the
at-the-money volatilities gives rise to the
characteristic smile of the vol curve - This is
called the Smile Effect - For example, if the actual distribution shows
fatter tails than that suggested by the lognormal
distribution (what is termed excess kurtosis),
low delta options will have been underpriced
using BS - Traders compensate for this by adding a spread
above the ATMF vols to both the low and high
strike options
20Volatility (Contd)
- Volatility smile (Contd)
- 2nd Adjustment Also, the BS model does not
take into account any market trends. - Accordingly, option traders have to adjust their
vol prices such that strikes lying in the trend
will be more expensive than the strikes
symmetrical to them compared to the outright. - In theory, all strikes should trade at the same
vol since they are all based on the same
underlying instrument. - The adjustments which traders make to the ATMF
vols in order to quote high strike or low strike
options result in the characteristic smile
profile. - Smile Effect in a neutral market
- The market has a neutral bias towards higher or
lower strikes - The price structure is symmetrical
- Only extreme strikes are adjusted
21Volatility (Contd)
- Volatility smile (Contd)
- Smile Effect in a bullish market
- When high strike options are in demand, the
implied volatilities need to be adjusted higher - The price structure is asymmetrical
- The market favors higher strikes (OTM Calls)
- Smile Effect in a bearish market
- When low strike options are in demand, the
implied volatilities need to be adjusted higher - The price structure is asymmetrical
- The market favors lower strikes (OTM Puts)
- Since the curve may be shaped like a lop-sided
smile or a smirk or a frown, people have been
using the term volatility skew instead of
volatility smile because the term skew doesnt
imply the sort of symmetry that the term
smiledoes. - A smile curve can be defined for every
maturity. We may have a rather neutral sentiment
on the short term but a bullish view on the long
term. Check the concept of volatility surface
(strike x maturity x vol)
22Volatility (Contd)
- Risk Reversal
- Now that it is clear how and why high strike and
low strike vols differ from the ATMF vols, it
becomes important to understand how this is
measured or obtained in the market - The risk reversal is the volatility spread
between the level of vol quoted in the market for
a high strike option and the vol for a low strike
option - Risk reversals are collars, where the bought
option and the sold option have the same delta - As options with the same delta have the same
sensitivity to the vol (or same vega), risk
reversals are vega neutral - As a vega neutral structure, the vol spread will
be more important than the actual vol level - R/R are quoted as vol spreads
- They will also have to reflect an eventual
asymmetry of the Smile Effect - The market convention is to quote the difference
between 25 delta strikes, however any other delta
may be priced - So, ignoring bid offer, if the vol of a 25 delta
JPY put is 10.80, and if the vol of a 25 delta
JPY call is 11.20, then the risk reversal would
be quoted as 0.40, JPY calls over, indicating
that JPY calls are favored over JPY puts (a
skewness towards a large yen appreciation)
23Volatility (Contd)
- Risk Reversal (Contd)
- Instead of quoting exercise prices directly, the
convention in the options market is to quote
prices for options with particular deltas. Like
the practice of quoting implied volatilities, the
rationale for this is to allow comparison of
quotes without needing to take into account
changes in the underlying price. When referring
to the delta of options, market participants also
drop the sign and the decimal point of the delta.
So for example, an OTM put option with a BS
delta of -0.25 is referred to as a 25-delta put. - A 25-delta risk reversal is obtained by buying a
25-delta option and selling a 25-delta option in
the opposite direction. - In this example, the OTM call more expensive than
the equally OTM put (compared with what would be
predicted by the BS model)
24Volatility (Contd)
- Risk Reversal (Contd)
- R/R shows what direction the market is favoring.
- R/R also gives an indication of the strength of
the markets expectations. - R/R indicates the degree of skewness compared
with the lognormal distribution, which itself is
positively skewed. - Traders need to reach an agreement on the actual
level of volatilities for the call and put when
trading R/R. - To translate risk reversal quotes into actual
vols, one requires information on strangles or
butterflies.
25Volatility (Contd)
- Risk Reversal (Contd)
- A 25 delta strangle is obtained by buying (or
selling) a 25 delta call and a 25 delta put. - Strangles are quoted in absolute volatility terms
as the average of call and put volatilities
(often expressed as a spread over ATMF vol). - A long 25 delta butterfly is the combination of a
short ATMF straddle and a long 25 delta strangle. - Butterflies are quoted as a spread between the
strangles and the straddles. - Observing both the risk reversal and the strangle
(or the butterfly) allows the calculation of two
separate volatilities for the call and put. - For example, from the following mid-market
information, - ATMF vol 10.0
- Butterfly (or Strangle quoted as a spread over
ATMF vol) 0.6 - R/R 1.0 call over
- Then Strangle 10.0 0.6 10.6, Vol for the
call 10.6 1.0 / 2 11.1, Vol for the put
10.6 1.0 / 2 10.1
26Volatility (Contd)
27Volatility (Contd)
- Volatility Time value
- An increase in volatility does not affect the
intrinsic value of an option, but does have an
interesting effect on the time value of an
option. - The time value of a one-year European call with a
strike of Y100 calculated for a range of spot
prices at different volatility levels result in
the above curve. - For any ATM option, an increase in volatility
will proportionately increase its time value
28Volatility (Contd)
29Volatility (Contd)
- Historical Volatility ???
- ??? ???? ??? ????? ???? (Natural Log, Ln)? ????
?? ? ? ?? ?? ????? ??? ?. - Monthly Volatility (Daily Data ?? ?)
- Ln(St/St-1)(?? 21??? ????) ?252
- Monthly Volatility (Weekly Data ?? ?)
- Ln(St/St-1)(?? 4??? ????) ?52
- 1year 12??, 1year 52?, 1year 252?
30Volatility (Contd)
- Historical Volatility ???(Contd)
LN(B4/B3)
STDEV(C4C8)SQRT(252)
STDEV(C4C24)SQRT(252)
31Volatility (Contd)
32Option Valuation by Binomial Trees
- Theoretical Option Value
- Sum of Expected Values Sum of probability
expected price change - Binomial P/L
33Option Valuation by Binomial Trees (Contd)
- Binomial Tree
- The binomial tree displays an assets potential
price outcomes and the probability of occurrence
associated with each specific time intervals. - Assumption There is 5050 chance price will be
moved by 1 - Binomial Tree
34Option Valuation by Binomial Trees (Contd)
- Binomial Tree Option
- The binomial tree is useful for visualizing how
different variables affect options pricing - All values above(Below) the strike price line
represent outcomes that would produce a payoff
for a Call (Put)option - Buy U Call
35Option Valuation by Binomial Trees (Contd)
- Theoretical Value Sum of MAX(0,Si-K)
Probability - (Y71/32)(Y55/32)(Y35/16)(Y15/16)(05/32
)(0132) Y2.25 - Given a time t1T European call option with a
strike price of Y98, - the theoretical value of this call is Y2.25
- Option Value
36Option Valuation by Binomial Trees (Contd)
- Concept of Binomial Option Valuation
Method(No-arbitrage or Riskless hedge approach) - ??(?)? ?????(Short Call)?? ??? ?????(??-?? ???)?
????? ?? ??? ??. - ??? ?? ?? ??-?? ????? ???, ??? ?? ?? ??? ???.
- ??? ???? r?? ???, ?????? ?????
?? S0? - f ??.
37Option Valuation by Binomial Trees (Contd)
- ???? ??? ????? ???(Risk neutral approach)
- ?????? ???? ?? ??? p(?????? Risk neutral
probability)? ??? ????? (1-p)? ??? ??? ??? ?????,
????? 1?? ?? ????? ??? ??. - ??, ??? ?? ?? ??? ??? ??? ????(?? E(x2)-
E(x)2), - ??? ?? ??? ? ??.
- ?? ??? ??? ??, ?? ?? ????? ??? ?? ??? ??? ??.
38Option Valuation by Binomial Trees (Contd)
- ???? ??? ????? ???(Risk neutral approach)
(Contd) - ?? ??? ???, ?? ??? ??? ?? ??? ? ??.
39Option Valuation by Binomial Trees (Contd)
- ????? ???? ??
- ??? ?? ????? ?????, ??? ??? r?? r-rf? ??? ????,
- ??? ?? ??? ????.
- ??? ????? ???, ??? ????? ????? ???? ????? ??? ?
??. - ?, ????? ????? Exp(-r?t)?? ???? ??.
40Option Valuation by Binomial Trees (Contd)
- ????? ??? ??? ? ?? ????
- ??(So)1,230
- ????(X)1,230
- ????(r)5
- ????(rf)2
- ???8
- ??3??(0.25)
- ????(N)5 (?t0.05)
- ????0.9975
- ????(a)1.0015
- ????(p)0.5375
- u1.0180
- d0.9823
- ?? ?) 92.99115.080.53750.997567.81(1-0.5375)
0.9975
41Option Valuation by Binomial Trees (Contd)
- Currency Option Pricing Application with Visual
Basic Code - ?? ?????? ??????? Binomial Tree? ??? ???? ????
Function Binomial_European(S, X, Sday, Mday, Vol,
r, rf, Call_Put, N) Dim St(0 To 200, 0 To
200) As Double Dim optlet_price(0 To 200, 0
To 200) As Double tau (Mday - Sday) / 365
dt tau / N u Exp(Vol Sqr(dt)) d
1 / u a Exp((r - rf) dt) b Exp(-r
dt) P (a - d) / (u - d) For i 0 To N
For j 0 To i St(i, j) S
u j d (i - j) Next j Next i
For j 0 To N If (Call_Put "Call")
Then optlet_price(N, j)
Application.WorksheetFunction.Max(St(N, j) - X,
0) Else optlet_price(N, j)
Application.WorksheetFunction.Max(X - St(N, j),
0) End If Next j For i N - 1 To
0 Step -1 For j 0 To i
optlet_price(i, j) (P optlet_price(i 1, j
1) (1 - P) optlet_price(i 1, j)) b
Next j Next i Binomial_European
optlet_price(0, 0) End Function
42Option Valuation by Binomial Trees (Contd)
- Currency Option Pricing Application with Visual
Basic Code (Contd) - ?? ?????? ??????? Binomial Tree? ??? ???? ????
Function Binomial_American(S, X, Sday, Mday, Vol,
r, rf, Call_Put, N) Dim St(0 To 200, 0 To
200) As Double Dim optlet_price(0 To 200, 0
To 200) As Double tau (Mday - Sday) / 365
dt tau / N u Exp(Vol Sqr(dt)) d
1 / u a Exp((r - rf) dt) b
Exp(-r dt) P (a - d) / (u - d) For i
0 To N For j 0 To i St(i,
j) S u j d (i - j) Next j
Next i For j 0 To N If (Call_Put
"Call") Then optlet_price(N, j)
Application.WorksheetFunction.Max(St(N, j) - X,
0) Else optlet_price(N, j)
Application.WorksheetFunction.Max(X - St(N, j),
0) End If Next j For i N - 1 To
0 Step -1 For j 0 To i
optlet_price(i, j) (P optlet_price(i 1, j
1) (1 - P) optlet_price(i 1, j)) b
If (Call_Put "Call") Then
optlet_price(i, j) Application.WorksheetF
unction.Max(St(i, j) - X, optlet_price(i, j))
Else optlet_price(i, j)
Application.WorksheetFunction.Max(X - St(i, j),
optlet_price(i, j)) End If
Next j Next i Binomial_American
optlet_price(0, 0) End Function
43Financial Variables Movement
- Markov Property
- ???? ???? ??? ??? ?? ??? ?, ?? Stochastic
Process? ???? ??. - Markov Process? Stochastic Process? ? ???, ??? ??
???? ???? ??? ??? ?? ????? ??? ?? ???. - Wiener Process( Brownian Motion)
- Markov Process ? ??? 0??, ??? 1? ?? Wiener
Process ?? Brownian Motion?? ??. - ?? z? Wiener Process? ?? ?, ?t ??? ??? ??? ??.
- Mean of ?z 0
- St. dev. of ?z sqrt(?t)
- Generalized Wiener Process
- Mean of ?x a?t
- St. dev. of ?x bsqrt(?t)
44Financial Variables Movement (Contd)
- Process of Stock Price
- ??? ?? ??(?t)? ??? ???(?S)? ?????(?)? ??(?t)? ?
????, - ??(?t)? 0? ????? ??? ?, ?? ?? ????.
- ???, ??(S)? ?? ???? ?? ??? ?, ??? ?? ?? ????.
45Financial Variables Movement (Contd)
46Financial Variables Movement (Contd)
47Financial Variables Movement (Contd)
48Financial Variables Movement (Contd)
- Ito Process
- Generalized Wiener Process? ? ?? a, b? ???? x? ??
t ? ?? ? ?, ?? Ito Process? ??, ??? ?? ?? ????. - Itos Lemma Option Price of Stock
- ?? ?? ??? ????? ??? ??? ????.
- Itos Lemma? ?? x, t? ??? f? ??? ?? ??? ???? ???.
- ?? f ?? Ito Process? ???,
- Drift(?? ????)?
- ???
49Financial Variables Movement (Contd)
- Itos Lemma Option Price of Stock (Contd)
- ?? ?
???????, ??(S)? ??(t)? ??? f? ?? ?? ?? ??? ???. - Itos Lemma ? ??
- flnS?? ? ?, ?f/ ?S1S, ?2f/ ?S2-1/S2, ?f/
?t0??. - ???,
? ????. -
- ?, ??? (?-?2/2)T, ??? ?2T? ????? ??? ??.
50Black-Scholes Model
- Lognormal Property of Stock price
- ??? Lognormal??? ???, Geometric Brownian Motion?
???, - ???, lnS ?? GBM? ??? ???, lnS? ????? ??? ?? ??
????.
51Black-Scholes Model (Contd)
- ?????(Distribution of Rate of Return)
- ?? ???? T????? ???? ?????? ? ?,
- ?, ???? ??? (?-?2/2)??, ????? ?/?T ? ????? ???.
-
52Black-Scholes Model (Contd)
- Black-Scholes-Merton ?? ??? ??
-
? ?????, -
?? ????. - ?f/ ?S ??? ??? (-)? ?????? ??? ?????? ??? ??
- ?????? ???
- ??? ?? ?? ?t??? ????? ????(??)? ??? ??.
- ??? ?? ?? ??? ????? ???? (??) ? r??t? ????,
-
?
??? ????.
53Black-Scholes Model (Contd)
54Proof of Black-Scholes Model
- Key Result
- Key Result? ??
- ??, ??? ?? ????,
- H(Q)? Q? ?? ?????? ? ?,
55Proof of Black-Scholes Model (Contd)
56Currency Options by Black-Scholes Model
- Black-Scholes ?????? ??
- ?? ?? ??? ?? GBM? ???, ??-??????, ??? ?? ?? ????.
- ??? ???? ??(q)? ?? ??? ?????, S0 ?? S0 Exp(-qT)
?? S0 Exp(-rfT)? ??? ?? ????.(??/? ??? ?? rf?
??? ??) - ??, Black-Scholes? ??? ?? ?? ?????, ???? ???
???? ???? ????.
57Currency Options by Black-Scholes Model (Contd)
- Put-Call Parity
- ??? ???? ? ????? ??? ?? ??? ????.
58Currency Options by Black-Scholes Model (Contd)
- Currency Option Pricing Application with Visual
Basic Code - ?? ?????? ??????? Black-Scholes ???? ????
Function EC(S, X, Sday, Mday, vol, r, rf) As
Double Dim t As Double Dim d1 As Double
Dim d2 As Double t (Mday - Sday) /
365 d1 (Log(S / X) (r - rf vol 2 / 2)
t) / (vol t 0.5) d2 d1 - vol t
0.5 EC Exp(-rf t) S
Application.NormSDist(d1) - Exp(-r t) X
Application.NormSDist(d2) End Function Function
EP(S, X, Sday, Mday, vol, r, rf) As Double
Dim t As Double Dim d1 As Double Dim d2
As Double t (Mday - Sday) / 365 d1
(Log(S / X) (r - rf vol 2 / 2) t) /
(vol t 0.5) d2 d1 - vol t 0.5
EP Exp(-r t) X Application.NormSDist(-d
2) - Exp(-rf t) S Application.NormSDist(-d1)
End Function
59Option Sensitivity (Delta)
- ????
- ??? ITM?? ?? ???
- ????
- ???? ????? ?? ???
- ATM??? ??? 0.50
- ????
- ??? ??? ??? ??? ???? ??? ???? ???? ??? ??? ?????
?????? ???? ??? ? ??. - Dynamic Hedging
- ??? ??,??,Volatility ?? ??? ?? ??? ??? ??? ???
??? ??. - ???? ????
- ???? ???? ?? ???? ?????? ? ??? ?????, ???? ??? ??
?????? carrying cost??? ?? risk? ??? ?.
60Option Sensitivity (Delta Contd)
- ??(Delta)
- ?? ???? ???? ????,
? ????. - ??(?)? ???? ????? ?? ???? ????.
? ????? ?????. - ??? ??? ??
- Black-Scholes ?? ?????? ??,
- ????? ??
- ????????? ????? r?? r-rf? ???? ??? ??.
61Option Sensitivity (Delta Contd)
- ????(S) ????? ?? ??? ??
- ?????(Delta Neutral)? ????(Dynamic Delta Hedging)
- ?????? ?? ???? ???? ????? ??? ?????? ???, ????
??? 0.6? ?? 0.6??? ????? ???? ??? ???(0)??. - ???? ?? ? ??? ?? ? ??? ?? ?? ????? ??
???(Rebalancing)? ???? ??. ?? ?? ???? ?????? ??.
OTM
X
62Option Sensitivity (Delta Contd)
- Continuous delta hedging
- ???? ?? ????? ??? ?? ?? ?? ??????? ??? ????.
- ?? ???? ? ?????
- ????(the gamma effect, convexity effects)
- ?????? ??(change in perceived volatility)
- time decay due solely to the passage of time
- ???? ????? ?? ??
- No transaction cost
- no jumps
- no shift in the volatility.
63Option Sensitivity (Gamma)
- Delta of delta
- ??? ??? ?? ???? ???? ?????? ?????? ?? ??? ???.
- Positive/Negative ??
- ??? ???? ???????? ???? ??? ???? ???????? ???? ??
- Positive ???? ? ??? ??? Negative ?? ????.
- At the money?? ??? ???? ?.
- ??? ??? ?? ?? ???? ??.
- ?? ?? ???? ??? ???
- ??
- Put?? ??? () ??
- ???? ?? (-??) (??)
- ???? ?? (-??) - (??)
- Put?? ??? (-) ??
- ???? ?? (??) (-??)
- ???? ?? (??) - (-??)
64Option Sensitivity (Gamma Contd)
- ??(Gamma)
- ??? ???? ????? ?? ????? ????. ?,
- ?? ??? ?? ???? ?? S?S? ? ? ????? C? C? ?? C?
C? ??. - ?? C-C? ????? ??? ????, ?? ????? Convexity?
?? ????.
65Option Sensitivity (Gamma Contd)
- ??? ????? ??
- ????? ??
- ????? ??? ?? ??? ????, ?? ATM? ?? ??? ???????
????. - ?? Plain vanilla ????? Exotic(Digital)??? ?? ?
?? ????. - ?? ???(Gamma Neutral)
- ?????? ????? ?????? ??? 0?? ??? ?? ???.
- ???, ????? ???? ?? ??? 0??? ??????? ??? ?? ? ??,
?? ??? ???? ???? ????. - ??-?? ???(Delta-Gamma Neutral)??? ?? ???? ????
??? ??? ??? ??? ??? ????.
66Option Sensitivity (Theta Vega)
- ?? ???
- ????? ?? ????? ??
- ?????? ??? ????? ????? ?.
- ?? ??? ??? ??? ??.
- At the money?? ??? ???? ?.
- At the money?? ????? ?? ??? ??(??)? ?? ?? ?? ???
???? ??? ?. ?? ???????? ??, at the money ?? ?????
?? ?? ???? ?? ????? ??? ?? ???? ???? ???? ??? ???
??.. - ?????
- Implied volatility??? ?? ????? ??
- Historical volatility?? ???? ??? ??.
- ?? ??? ??? ??? ??.
- At the money?? ??? ???? ?. Deep out of money? ???
?? ???? ?? ??? ?? ?? ??? volatility? ??? ? ?????
? ??? ?? ???? at the money? ???? ??? ?? ?
67Option Sensitivity (Theta)
- ??(Theta)
- ??? ??? ??? ?? ?? ??? ???? ???. ?,
- ??? ???? ?? ????? ???? ??? Time Decay??? ??.
- ??? ????? ??
- ??? ??
- ????? ????? ?? ????(-)??.
- ATM? ?? Time decay? ?? ??.
68Option Sensitivity (Vega)
- ??(Vega)
- ??? ???? ?? ????? ??? ???. ?,
- ???? ?? ???? ?? ?? ???? ??.
- ????? ????? ?????? ????? ??? ??.
- ??? ????? ??
69Option Sensitivity (Sensitivity Factor
Relationship)
- ??, ??, ??? ??
- Black-Scholes Merton? ??????? ??,
- ????? ???? ??, ??? ?? ??? ????.
- ?, ??? ?? ?()? ??, ??? ? ?(-)? ??.
70Option Sensitivity (????? ??? ??)
- ??? ??? ?? ?????.
- ?? ?? ?? ??? ???.
- Delta-gamma replication.
- Volatility hedging
- B/S ? ???? ??? volatility? ???? ??? ?? volatility
??? ?? ??? ??? ?? ???? ?? ??? B/S????? ?? ??. - ????? vs. ????
- ?? ??? ???????? ?? ?? ??? ???? ?? ?, ?? ?? ???
???? ??? ????? ??? ??? ??? ?.
71Option Sensitivity (Application)
- Currency Option Pricing Application with Visual
Basic Code - ?? ?????? ??????? Black-Scholes ????? Greek??
Function Delta_Call(S, X, Sday, Mday, vol, r, rf)
As Double Dim t As Double Dim d1 As
Double t (Mday - Sday) / 365 d1
(Log(S / X) (r - rf vol 2 / 2) t) / (vol
t 0.5) Delta_Call Exp(-rf t)
Application.NormSDist(d1) End Function Function
Delta_Put(S, X, Sday, Mday, vol, r, rf) As
Double Dim t As Double Dim d1 As Double
t (Mday - Sday) / 365 d1 (Log(S / X)
(r - rf vol 2 / 2) t) / (vol t 0.5)
Delta_Put Exp(-rf t) (Application.NormSDist(
d1) - 1) End Function Function Gamma(S, X, Sday,
Mday, vol, r, rf) Dim t As Double Dim d1
As Double Dim N1 As Double t (Mday -
Sday) / 365 d1 (Log(S / X) (r - rf vol
2 / 2) t) / (vol t 0.5) N1 (1 / (2
Application.Pi()) 0.5) Exp((-d1 2) / 2)
Gamma (N1 Exp(-r t)) / (S vol t
0.5) End Function
72Option Sensitivity (Application Contd)
- Currency Option Pricing Application with Visual
Basic Code(Contd) - ?? ?????? ??????? Black-Scholes ????? Greek??
Function Vega(S, X, Sday, Mday, vol, r, rf)
Dim t As Double Dim d1 As Double Dim N1
As Double t (Mday - Sday) / 365 d1
(Log(S / X) (r - rf vol 2 / 2) t) / (vol
t 0.5) N1 (1 / (2 Application.Pi())
0.5) Exp((-d1 2) / 2) Vega S (t
0.5) N1 Exp(-rf t) End Function Function
Theta_Call(S, X, Sday, Mday, vol, r, rf) Dim
t As Double Dim d1 As Double Dim N1 As
Double Dim d2 As Double t (Mday - Sday)
/ 365 d1 (Log(S / X) (r - rf vol 2 /
2) t) / (vol t 0.5) d2 d1 - vol t
0.5 N1 (1 / (2 Application.Pi()) 0.5)
Exp((-d1 2) / 2) Theta_Call -(S N1
vol Exp(-rf t)) / (2 t 0.5) rf S
Application.NormSDist(d1) Exp(-rf t) - r X
Exp(-r t) Application.NormSDist(d2) End
Function Function Theta_Put(S, X, Sday, Mday,
vol, r, rf) Dim t As Double Dim d1 As
Double Dim d2 As Double Dim N1 As Double
t (Mday - Sday) / 365 d1 (Log(S / X)
(r - rf vol 2 / 2) t) / (vol t 0.5)
d2 d1 - vol t 0.5 N1 (1 / (2
Application.Pi()) 0.5) Exp((-d1 2) / 2)
Theta_Put -(S N1 vol Exp(-rf t)) / (2
t 0.5) - rf S Application.NormSDist(-d1)
Exp(-rf t) r X Exp(-r t)
Application.NormSDist(-d2) End Function
73Option Valuation Sensitivity Practice
74Exotic Options
- Barrier Options
- Barrier Options? Payoffs? ????? ???????
????(Hurdle Rate)? ?????? ?? ????. - Barrier Options? ?? Knock-In(K/I)?
Knock-Out(K/O)?? ?? ? ???, - K/I? ????? ????? ??? ??? ???, K/O? ??? ???? ???.
- Barrier Options? ??? ?? Plain Vanilla???? ?????
???? ??? ?? ?????, ??? ????? ? ??? ????? ???
????.
75Exotic Options (Contd)
- Barrier Options? ????(Down Barrier Call)
- H lt X ? ??,
- cdocdic???, cdoc-cdi
- H gt X ? ??,
76Exotic Options (Contd)
- Barrier Options? ????(Up Barrier Call)
- Hlt X ? ??, cuo0, cuic
- Hgt X ? ??,
77Exotic Options (Contd)
- Barrier Options? ????(Down Barrier Put)
- HltX? ??,
- H gt X ? ??, pdo0, pdip
- Barrier Options? ????(Up Barrier Put)
- Hlt X ? ??,
- Hgt X ? ??,
78Exotic Options (Contd)
- Binary Options(Digital Options)
- Binary Options? ?? Payoffs? ?????.
- ???? ?? Cash-or-nothing ???? Cash-or-nothing
Call? ??, - Cash-or-nothing Put?
??. - ? ?? ??? Binary Options? Asset-or-nothing ??
????? ???? ??,
???? ??.
79Exotic Options (Contd)
- Non-standard American Options
- Bermudan option? ???? American option? ?? ???
???? ???? ? ? ??. - ?? ?? ??? ????(Binomial Tree)? ????(Trinomial
Tree)? ?? ?? ????. - Forward Start Options
- Forward Start Options? ?? ?????? ???? ????.
- ??? ATM Forward Start ?Options? ???
??. - ??? c? ??????? T2-T1??? ????
- Compound Options
- Compound Options? ??? ?? ????.
- ???, Call on Call, Put on Call, Call on Put, Put
on Put? ?? ? ??. - Chooser Options
- Chooser Options? ???? ?? ??? ??? ? ?? ????.
- ??? ??? Payoffs? max(c,p)??.
80Exotic Options (Contd)
- Chooser Options (Contd)
- ?? Put-Call Parity? ?? ??? ? ?? ???.
- ?? Chooser Options? ????? X? ???? ?????
Xe-(r-rf)(T2-T1)? ???? ????. - Lookback Options
- Lookback Options? Payoffs? ?? ????? ?? ?? ???? ??
????. - ??? ???? ??? ????? ????? ?????? ??? ????.
- ??? ???? ??? ????? ????? ?????? ??? ????.
- ?? Lookback Options? ??? ?? ? ?? ??.
- Shout Options
- Shout Options? ???? ????? ?????? ????? ??? ????,
??? ?? Payoff? ??? ? ??. Lookback Option? ??? ???
?? ???, ????? ??.
81Exotic Options (Contd)
- Asian Options
- Asian Options? ?? Payoffs? ??????? ????? ???
????. - ???? ??? max(0,Savg.-X), ???? max(0,X-Savg.)
- Asian Options? Plain Vanilla ???? ????.
- Asian Options? ?? ??? ?????? ????? ????? ??? ???
? ?? ???. - ?, ???? ??? max(0,ST-Savg), ???? max(0,Savg.-ST)
82Option Strategy 1. Hedging using Put Option
- ?? Long???? Put??? ??? ??
83Option Strategy 2. Hedging using Call Option
- ?? Short???? Call??? ??? ??
84Option Strategy 3. Covered Call Writing
- ?? Long???? Call?? ??? ???? Put?? ??? ??
85Option Strategy 4. Straddle
- Long Straddle (Spot 1200)
- Buy USD Call 1205 Buy USD Put at 1205
- Expectation
- ??? ??? ??? ?? ??? ?? ??? ??.
- ??? ????? ???? ??? ?? ???? ??.
- Strategy
- Premium? ?? ???? ????? ?? ??.
- Premium 75won
- Payoff
- Below 1165 Start gaining
- 1165-1240 Loss Area (Max 75won)
- Above 1240 Start gaining
86Option Strategy 5. Strangle
- Long Strangle (Spot 1200)
- Buy USD Call 1230 Buy USD Put at 1170
- Expectation
- ????? ??? ??? ?? ??? ????
- ?????? ??? ??? ??? ??? ?? ??.
- Strategy
- Straddle? ?? premium? ?? ?? ?? ??
- Premium 55won
- Payoff
- Below1143 Start gaining
- 11431255 Loss Area (Max loss 55won)
- Above 1255 Start gaining
87Option Strategy 6. Bull Call Spread
- Bull Call (Spot 1200)
- Buy USD Call at 1205 Sell USD Call at 1230
- Expectation
- ??? ??? ?? ????? ???? ??
- Strategy
- Premium? ????/ loss? ???/ profit? ?? ? ?.
- Premium 11won
- Payoff
- Below 1205 Pay premium (36won)
- 12051211 Loss (1211-1205(Strike))
- 12111230 Profit (1230(Strike)-1211)
- Above 1230 Receive Premium(24won)
88Option Strategy 7. Risk Reversal
- Risk Reversal
- Buy USD call at 1242, sell USD put at 1180
- Expectation
- ??? ??/????? ?? 1150 1300? Range??.
- Strategy
- ???? ?? ?? ???/??? ?? ??.
- Payoff
- Below 1180 Start losing (Less loss than
Forward) - 11801242 No impact (Saved hedging cost)
- Above 1242 Start earning (less profit than
Forward)
89Option Strategy 8. Seagull
- Seagull
- Buy USD call at 1200, sell USD put at 1170,
and sell USD call at 1230 - Expectation
- ? ??? ??? ??? ?????? ?????, ? ??? ????.
- Strategy
- ???? ??(11701230)??? Call? ??? ??,
- ?????? ?? ??? ????? ??
90Option Strategy 9. Range Forward
- ?? Short???? Risk-Reversal ? ??? ??? ????
Buy U Call Option (X SH)
91Option Strategy 10. Target Forward
- ?? Long???? ?????? ??? ??? ?????
- ??? ????? ?? ???? ???? ???? ??? ????, ??? ?????
??. - ????? ?? ???? ???? ??? ???? ??.
- ?????
Buy U Put Option (X SH)
92Option Strategy 11. Double Forward
- ?? Long???? ?????? ??? ??? ?????
- ??? ????? ?? ???? ???? ???? ??? ????, ??? ?????
??. - ????? ???? ?? ???? ??? ??? ???? ??? ? ??.
- ?????
93Option Strategy 12. Participating Forward
- ?? Long???? ?????? ??? ??? ?????
- ??? ??? ??? ?, ??? ??? ?? ??? ????, ??? ?? ??? ??
? ??. - ?????
94Option Strategy 13. Forward Extra
- ?? Long???? ?????? ??? ??? ?????
- ??? ??? ??? ?, ??? ??? ?? ??? ????, ??? ?? ??? ??
? ??. - ????? 1,230?/U?? ? ?,
- ????? 1,215?/U ??? ??, 1215?/U? ??? ??,
- ????? 1,265?/U ??? ??, 1215?/U? ??? ??,
- ??? ?? ??, ??? ??.
95Option Strategy 14. Adjustable Forward I
- ?? Long???? ?????? ??? ??? ?????
- ??? ??? ??? ?, ??? ??? ?? ??? ????, ??? ?? ??? ??
? ??. - ????? 1,230?/U?? ? ?,
- ????? 1,340?/U ??? ??, 1230?/U? ?? ??(1230?/U
??? ??), - ????? 1,340?/U ??? ??, 1270/U? ?? ??(1270?/U
??? ??),
96Option Strategy 15. Adjustable Forward II
- ?? Long???? ?????? ??? ??? ?????
- ??? ??? ??? ?, ??? ??? ?? ??? ????, ??? ?? ??? ??
? ??. - ????? 1,230?/U?? ? ?,
- ????? 1,295?/U ??? ??, 1260?/U? ?? ??(1260?/U
??? ??), - ????? 1,295?/U ??? ??, 1220/U? ?? ??(1220?/U
??? ??),
97Option Strategy 16. Accrual Forward
- ?? Long???? ?????? ??? ??? ?????
- ??? ??? ??? ?, ??? ??? ?? ??? ????, ??? ?? ??? ??
? ??. - ????? 1,230?/U?? ? ?, ????? ???? ??
- ??? ??? 1,235?/U ??? ??, ????? ?? 0.40?/U? ??.
- ??, 1,270?/U? ???? ????,
- ??? ??? 1,235?/U ??? ??, ????? ?? 0.40?/U? ??.
98Option Strategy 17. Range Premium Betting
- ??? ?? ??? ?????
- ??? ??? ? ??? ??? ??? ??? ?,
- ??? ??? ???? ????? ??? ? ??.
- ????? 1,230?/U?? ? ?,
- ????? 1,2101,240?/U ??? ?? ??, 11?/U? ??.
- ????? 1,2101,240?/U ??? ??? ??, 9?/U? ??.
99Option Strategy Excel Application
- ?? ???? ??? ??? Option Strategy ??(Target Forward
Sell)
100Epilogue
- QA ?
- Other issues in Option markets?
- Any issue of derivatives market including swap
and credit derivatives ? - More Information
- E-mail johnshin_at_kfb.co.kr
- Call 02-3702-4412
- Class presentation file other materials
http//vols.com.ne.kr/fxkorea.html