T.F. Edgar - PowerPoint PPT Presentation

About This Presentation
Title:

T.F. Edgar

Description:

T.F. Edgar Department of Chemical Engineering The University of Texas Austin, Texas 78712 February 19-20, 2001 Austin, Texas – PowerPoint PPT presentation

Number of Views:118
Avg rating:3.0/5.0
Slides: 23
Provided by: ChrisB129
Category:
Tags: aspentech | edgar

less

Transcript and Presenter's Notes

Title: T.F. Edgar


1
  • T.F. Edgar
  • Department of Chemical Engineering
  • The University of Texas
  • Austin, Texas 78712
  • February 19-20, 2001
  • Austin, Texas

2
AgendaMonday February 19th
  • 830 Coffee and Donuts
  • 900 Introduction/Review of Agenda T. Edgar
  • 910 PI Overviews T.Edgar
  • J. Qin
  • J. Rawlings
  • 1010 Comparison of Process Systems Consortia T.
    Edgar
  • 1040 Break
  • 1100 Multi-model Robust MPC J. Wang
  • 1145 Lunch (TCC Cafeteria)
  • 100 Closed-Loop State and parameter
    Estimation M. Nikolaou
  • Univ. of Houston
  • 200 Process Modeling and Control at
    Motorola Karen McBrayer
  • Motorola
  • 230 Break

3
AgendaMonday, February 19th
  • 300 Reactive Distillation Modeling and Control
  • J. Schell (UT)
  • J. Peng (UT)
  • S. Lextrait (UT)
  • 400 Poster Session
  • J. Hahn J. Schell S. Lextrait
  • J. Peng H. Potrykus S. Valle-Cervantes
  • Q. He J. Wang (UT) J. Wang (UW)
  • 530 Adjourn
  • 630 Mixer/Dinner Matts El Rancho - 2613 S. Lamar

4
AgendaTuesday, February 20th
  • 815 Meeting with PIs and Sponsors -
    Continental Breakfast
  • 900 CPC-6 Review J. Rawlings
  • 930 Recent Advances in Global
  • Optimization L. Lasdon
  • 1015 Break
  • 1030 Hierarchical Statistical Monitoring
    S. Valle- Cervantes
  • 1120 Subspace Identification Using PCA J.
    Wang (UT)
  • 1150 Wrap-up T. Edgar
  • 1200 Adjourn

5
TWMCC - Multiple Projects
  • Company JBR TFE JQ
  • AMD v v v v
  • Aspentech v v
  • Condea-Vista v
  • DuPont v v
  • Equilon v
  • Exxon/Mobil v v
  • Fisher-Rosemount v
  • KLA-Tencor v
  • Motorola v

6
TWMCC - Multiple Projects (Contd)
  • Company JBR TFE JQ
  • Pharmacia v
  • SmithKline Beecham v
  • Texas Instruments v
  • Tokyo Electron America v in progress
  • Union Carbide/Dow v
  • Weyerhauser v v
  • Courting Applied Materials, GE-Continental
    Controls, Chevron, DOT Products, Alliant Energy,
    SEMATECH, Matrikon, Oil Systems, Honeywell, Yield
    Dynamics

7
M.S., Ph.D. Graduates(1999 - 2001)
  • Student/Supervisor Destination
  • K. Teague (TFE) Ph.D. (5/99) Aspentech
  • C. Pfeiffer (TFE) Ph.D. (12/99) Motorola
  • Q. Finefrock (TFE) Ph.D. (?/?) Still
    consulting
  • J. Campbell (TFE) Ph.D. (8/99) KLA-Tencor
  • M. Misra (JQ) Ph.D. (8/99) Motorola
  • T. Nugroho (JQ) Ph.D. (8/99) Pertamina
  • R. Bindlish (JBR) Ph.D. (12/99) Dow
  • C. Rao (JBR) Ph.D. (12/99) Postdoc/Ohio
    State
  • G. Scheid (JQ) M.S. (5/99) LSI Logic
  • W. Cho (TFE) Ph.D. (5/01) AMD
  • B. Ko (TFE) Ph.D. (5/00) ExxonMobil

8
M.S., Ph.D. Graduates(1999 - 2001)
  • Student/Supervisor Destination
  • H. Yue (JQ) Ph.D. (5/00) Tokyo Electron
    America
  • S. Middlebrooks (JBR) Ph.D. (2/01) LSI
    Logic
  • C. Bode (TFE) Ph.D. (5/01) AMD
  • T. Soderstrom (TFE) Ph.D.
    (2/01) ExxonMobil
  • S. Alici (TFE) Ph.D. (5/01) Air Products
  • J. Schell (TFE) Ph.D.
    (5/01) Interviewing
  • J. Wang (JBR) Ph.D. (5/01) Interviewing
  • D. Patience (JBR) Ph.D. (12/01) Interviewing
  • S.V. Venkatesh (JBR) M.S. (5/01) ASML
    Mastools
  • S. Valle Cervantes (JQ) Ph.D.
    (5/01) Interviewing
  • R. Mak (JQ) M.S. (5/01) Interviewing
  • S.B. Hwang (TFE) Ph.D. (5/01) Return to
    Hyundai

9
Highlights (Edgar Group)
  • Added two new (experienced) graduate students in
    Spring
  • Six Ph.D.s to graduate in 2001
  • Publication of optimization book (with Himmelblau
    and Lasdon)
  • Seven students doing research at industrial sites
    during past year
  • (AMD, Motorola, Condea-Vista, KLA-Tencor, Tokyo
    Electron, SEMATECH)
  • ChE Department looking for systems faculty

10
Six Ph.D Candidates to Graduate in 2001
  • 1. Tyler Soderstrom Data Reconciliation and
    Gross Error Detection
  • 2. Semra Alici Dynamic Data Reconciliation
    Using Process Simulators
  • 3. John Schell Modeling and Control of Reactive
    Distillation Column
  • 4. Chris Bode Run-to-run Control of
    Photographic Overlay
  • 5. Sung Bo Hwang Modeling of Lithography Dry
    Development and RTCVD of SiGe
  • 6. Wonhui Cho Multivariable Temperature Control
    in Rapid Thermal Processing

11
Simultaneous Data Reconciliation and Bias
Detection/Identification Research Contributions
  • Tyler Soderstrom
  • Formulate Combined Problem as a Mixed Integer
    Programming (MIP) Problem
  • Evaluate the Effects of Method Parameters Using
    Linear Steady State Models (MILP Problem)
  • Incorporate Empirical Bias Detection Methods
    Directly into the Problem Framework
  • Extend the Method to be Applicable to Nonlinear
    Systems and Investigate Novel Solution Techniques
    (MINLP Problem)
  • Extend the Method to be Applicable to Nonlinear
    Dynamic Systems

12
Dynamic Data Reconciliation via Simulation
Software (DDRSS)
Semra Alici
DDRSS Algorithm
  • Two New Approaches for the Incorporation of
  • Simulation Software Into Dynamic Data
  • Reconciliation

HYSYS
Measurements, Initial Guesses
Model Identification
  • Finite Difference Approach
  • Time Series Model Approach

Simplified Model
  • Identification Methods
  • Parametric (Ordinary Least
  • Squares, AR, ARMA,... Models)
  • Multivariate Adaptive Regression
  • Splines (MARS)
  • Neural Networks

NLP
Constraints
Objective Func.
New Estimates
13
Modeling and Control of ReactiveDistillation
Columns
  • John Schell
  • Novel Application of Reactive Distillation
  • Kinetic, Exothermic Reaction with Stearic
    Equilibrium in Product
  • Pilot Column gt 40 feet tall
  • Validation of Steady State and Dynamic Models
  • RADFRAC, RateFRAC, Aspen Dynamics
  • Control Study
  • Shows need for nonlinear control

14
Run-to-run Control of Lithography Overlayand
Poly Gate Linewidth
  • Christopher A. Bode
  • Compiled a set of known disturbances to the
    process responsible for overlay and linewidth
    performance, and completed an analysis of
    variance to identify the significant
    disturbances.
  • Identified an strategy for the control of these
    significant disturbances based upon control
    thread methodology.
  • Developed a run-to run Model Predictive Control
    (MPC) method for each controlled variable.
  • Deployed above to high-volume semiconductor
    manufacturing, realizing a 40 improvement in
    process capability (Cpk) for overlay and a 44
    improvement in gate linewidth Cpk.

15
Rapid Thermal CVD of Si1-xGex
Sung Bo Hwang
  • RTCVD of Si1-xGex using Si2H6-GeH4 chemistry
    (470oC550oC)
  • Minimize diffusive mixing at interfaces using
    temperature and gas switching
  • Need process optimization to get the quantum
    dots or to deposit a Ge-graded film
  • DOE(Design of experiments)
  • 3 factors Temperature, flow rates of GeH4
    and flow rate of Si2H6.
  • Responses Growth rate, Ge concentration in
    films, and Morphology (dot size and density)
  • Full factorial with 3 center points
  • Neural network modeling
  • Using Bayesian Network
  • AFM (Morphology)
  • Dot density ( on Si gt on SiO2 )
  • XRD (Ge concentration and thickness)
  • Ge composition ration and growth rate mainly
  • depend on the reactant ratio (PGeH4/PSi2H6 )

12.68
17.75
Ge 20.48
16
Modeling and Control of RapidThermal Processor
  • Wonhui Cho
  • Multi input/output wafer heat transport dynamic
    model based on finite difference method (FDM) and
    view factor analysis
  • Closed loop parameter identification
  • Nonlinear MIMO (3X3) Iterative Control
    application to temperature uniformity control
  • Development of Windows NT-VME based real-time
    control system

17
Reactive Distillation Project Goals(J. Schell,
S. Lextrait, J. Peng)
  • Operate columns
  • Alkylation (Condea Vista)
  • Etherification (TAME chemistry)
  • Validate existing reactive distillation
    simulators
  • Aspens RADFRAC (equilibrium stage)
  • Aspens RateFRAC (mass transfer rate)
  • Aspen Custom Modeler
  • Develop fundamental nonlinear models for
    comparison
  • Future funding by Aspentech, GOALI proposal to
    NSF

18
Optimization of Chemical Processes
  • Second Edition
  • McGraw-Hill - available January, 2001
  • By Edgar, Himmeblau, and Lasdon
  • ISBN 0070393591
  • Major changes from First Edition
  • Chapter 2 Modeling for Optimization
  • Chapter 6 Unconstrained Optimization
  • Chapter 7 Linear Programming
  • Chapter 8 Nonlinear Programming
  • Chapter 9 Mixed-Integer Programming
  • Chapter 10 Global Optimization
  • Chapter 15 Process Design and Operations
  • Chapter 16 Planning/Scheduling/Control

19
Process Systems Research Consortia(www.che.utexas
.edu/cache/trc/t_process.html/systems)
  • Chemical Modeling Process Control Research
    Center, Lehigh University
  • Center for Process Analytical Chemistry,
    University of Washington
  • McMaster Control Consortium
  • Measurement and Control Engineering Center
    (University of Tennessee, Oklahoma State)
  • Center for Advanced Process Decision-Making,
    Carnegie Mellon

20
Process Systems Research Consortia
  • Texas - Wisconsin Modeling Control Consortium
    (TWMCC)
  • Texas Tech Process Control and Optimization
    Consortium
  • UC Santa Barbara Consortium
  • University of Delaware Process Monitoring and
    Control Consortium
  • Computer-Integrated Process Operations Consortium
    - Purdue

21
Consortium Metrics
  • Number of Number of Number of
  • Students/Postdocs Faculty Sponsors
  • Washington 26 28 33
  • Purdue 28 3-4 12-15
  • CMU 24 6 20
  • TWMCC 28 3-4 15
  • McMaster 22 4 20
  • Delaware 16 3 13
  • UT/OSU 15 10 16-19
  • Lehigh 14 4 7
  • Texas Tech 9 2 7
  • UCSB 6 1 11

22
General Observations
  • Several operate with formal consortium agreement,
    previous or current government agency funding
    (UW, CMU, Lehigh, UT/OSU)
  • Two are mostly focused on analytical measurements
    and chemistry faculty (UW, UT/OSU)
  • Most use agency funds to supplement industrial
    contributions (UCSB, Delaware, Purdue, Lehigh,
    McMaster, CMU, TWMCC)
  • Some allow special membership for vendors or for
    hardware/software donations in lieu of cash
    (Delaware, UCSB)
  • Company fees typically range from 12,000
    (McMaster-in US) to 35,000 (UW) UCSB (Single
    prof) 5000
  • Most consortia meet twice per year
Write a Comment
User Comments (0)
About PowerShow.com