Title: DNA Self-Assembly
1DNA Self-Assembly
Robert Schweller Northwestern University
Speaking of Science talk Buena Vista
University February 28, 2005
2Outline
- Importance of DNA Self-Assembly
- Synthesis of Nanostructures
- DNA Computing
- Tile Self-Assembly
- DNA Word Design
3Smart Bricks
4Wang Tiles
5(No Transcript)
6G C A T C G
C G T A G C
7(No Transcript)
8(No Transcript)
9(No Transcript)
10(No Transcript)
11 12(No Transcript)
13Super Small Circuits, Built Autonomously
14Molecular-scale pattern for a RAM memory with
demultiplexed addressing (Winfree, 2003)
15DNA Computers
Output!
Computer Program
Input
16DNA Computers
Output!
Computer Program
Input
Program
17DNA Computers
Output!
Computer Program
Input
Input
Program
18DNA Computers
Output!
Computer Program
Input
Output!
Input
Program
19Outline
- Importance of DNA Self-Assembly
- Tile Self-Assembly (Generalized Models)
- Tile Complexity
- Shape Verification
- Error Resistance
- DNA Word Design
20Tile Model of Self-Assembly (Rothemund, Winfree
STOC 2000)
Tile System
t temperature, positive integer
G glue function
T tileset
s seed tile
21How a tile system self assembles
G(y,y) 2 G(g,g) 2 G(r, r) 2 G(b,b)
2 G(p,p) 1 G(w,w) 1 t 2
T
22How a tile system self assembles
G(y,y) 2 G(g,g) 2 G(r, r) 2 G(b,b)
2 G(p,p) 1 G(w,w) 1 t 2
T
23How a tile system self assembles
G(y,y) 2 G(g,g) 2 G(r, r) 2 G(b,b)
2 G(p,p) 1 G(w,w) 1 t 2
T
24How a tile system self assembles
G(y,y) 2 G(g,g) 2 G(r, r) 2 G(b,b)
2 G(p,p) 1 G(w,w) 1 t 2
T
25How a tile system self assembles
G(y,y) 2 G(g,g) 2 G(r, r) 2 G(b,b)
2 G(p,p) 1 G(w,w) 1 t 2
T
26How a tile system self assembles
G(y,y) 2 G(g,g) 2 G(r, r) 2 G(b,b)
2 G(p,p) 1 G(w,w) 1 t 2
T
27How a tile system self assembles
G(y,y) 2 G(g,g) 2 G(r, r) 2 G(b,b)
2 G(p,p) 1 G(w,w) 1 t 2
T
28How a tile system self assembles
G(y,y) 2 G(g,g) 2 G(r, r) 2 G(b,b)
2 G(p,p) 1 G(w,w) 1 t 2
T
29How a tile system self assembles
G(y,y) 2 G(g,g) 2 G(r, r) 2 G(b,b)
2 G(p,p) 1 G(w,w) 1 t 2
T
30New Models
- Multiple Temperature Model
- temperature may go up and down
- Flexible Glue Model
- Remove the restriction that G(x, y) 0 for x!y
- Multiple Tile Model
- tiles may cluster together before being added
- Unique Shape Model
- unique shape vs. unique supertile
31New Models
- Multiple Temperature Model
- temperature may go up and down
- Flexible Glue Model
- Remove the restriction that G(x, y) 0 for x!y
- Multiple Tile Model
- tiles may cluster together before being added
- Unique Shape Model
- unique shape vs. unique supertile
32New Models
- Multiple Temperature Model
- temperature may go up and down
- Flexible Glue Model
- Remove the restriction that G(x, y) 0 for x!y
- Multiple Tile Model
- tiles may cluster together before being added
- Unique Shape Model
- unique shape vs. unique supertile
33New Models
- Multiple Temperature Model
- temperature may go up and down
- Flexible Glue Model
- Remove the restriction that G(x, y) 0 for x!y
- Multiple Tile Model
- tiles may cluster together before being added
- Unique Shape Model
- unique shape vs. unique supertile
34Focus
- Multiple Temperature Model
- Adjust temperature during assembly
- Flexible Glue Model
- Remove the restriction that G(x, y) 0 for x!y
Goal Reduce Tile Complexity
35Our Tile Complexity Results
Multiple temperature model
k x N rectangles
(our paper)
beats standard model
(our paper)
Flexible Glue
N x N squares
(our paper)
(Adleman, Cheng, Goel, Huang STOC 2001)
beats standard model
36Building k x N Rectangles
k-digit, base N(1/k) counter
k
N
37Building k x N Rectangles
k-digit, base N(1/k) counter
k
N
Tile Complexity
38Build a 4 x 256 rectangle
t 2
S3
0
S2
0
S1
0
S
g
g
p
g
C1
C2
C3
C0
S
39Build a 4 x 256 rectangle
t 2
S3
0
g
S2
0
0
1
2
3
0
0
g
S1
0
S
g
g
p
g
C1
C2
C3
C0
0
S3
0
S2
0
0
S1
g
g
p
S
C1
C2
C3
40Build a 4 x 256 rectangle
t 2
g
g
1
0
0
1
S3
0
p
r
g
S2
0
0
1
2
3
0
0
g
S1
0
S
g
g
p
g
C1
C2
C3
C0
S3
0
0
S2
0
0
S1
0
0
p
S
C1
C2
C3
41Build a 4 x 256 rectangle
t 2
g
g
1
0
0
1
S3
0
p
r
g
S2
0
0
1
2
3
0
0
g
S1
0
S
g
g
p
g
C1
C2
C3
C0
S3
0
0
S2
0
0
g
g
S1
0
0
0
1
S
C1
C2
C3
42Build a 4 x 256 rectangle
t 2
g
g
1
0
0
1
S3
0
p
r
g
S2
0
0
1
2
3
0
0
g
S1
0
S
g
g
p
g
C1
C2
C3
C0
S3
0
0
0
0
S2
0
0
0
0
S1
0
0
0
1
p
S
C1
C2
C3
C0
C1
C2
C3
43Build a 4 x 256 rectangle
t 2
g
g
1
0
0
1
S3
0
p
r
g
S2
0
0
1
2
3
0
0
1
2
g
S1
0
S
g
g
p
g
2
3
C1
C2
C3
C0
S3
0
0
0
0
0
0
S2
0
0
0
0
0
0
S1
0
0
0
1
1
1
p
S
C1
C2
C3
C0
C1
C2
C3
44Build a 4 x 256 rectangle
t 2
g
g
1
0
0
1
S3
0
p
r
g
S2
0
0
1
2
3
0
0
1
2
g
S1
0
p
r
S
P
R
g
g
p
g
3
0
2
3
p
r
C1
C2
C3
C0
S3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S1
0
0
0
1
1
1
2
2
3
3
1
2
2
3
p
S
C0
C1
C2
C3
C1
C2
C3
C0
C1
C2
C3
C0
C1
C2
C3
45Build a 4 x 256 rectangle
t 2
g
g
1
0
0
1
S3
0
p
r
g
S2
0
0
1
2
3
0
0
1
2
g
S1
0
p
r
S
P
R
g
g
p
g
3
0
2
3
p
r
C1
C2
C3
C0
S3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S1
0
0
0
1
1
1
2
2
3
3
1
2
2
3
P
S
C0
C1
C2
C3
C1
C2
C3
C0
C1
C2
C3
C0
C1
C2
C3
46Build a 4 x 256 rectangle
t 2
g
g
1
0
0
1
S3
0
p
r
g
S2
0
0
1
2
3
0
0
1
2
g
S1
0
p
r
S
P
R
g
g
p
g
3
0
2
3
p
r
C1
C2
C3
C0
S3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
S1
0
0
0
1
1
1
2
2
3
3
1
2
2
3
P
S
C0
C1
C2
C3
C1
C2
C3
C0
C1
C2
C3
C0
C1
C2
C3
47Build a 4 x 256 rectangle
t 2
g
g
1
0
0
1
S3
0
p
r
g
S2
0
0
1
2
3
0
0
1
2
g
S1
0
p
r
S
P
R
g
g
p
g
3
0
2
3
p
r
C1
C2
C3
C0
S3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
S1
0
0
0
1
1
1
2
2
3
3
1
2
2
3
P
R
S
C0
C1
C2
C3
C1
C2
C3
C0
C1
C2
C3
C0
C1
C2
C3
48Build a 4 x 256 rectangle
t 2
g
g
1
0
0
1
S3
0
p
r
g
S2
0
0
1
2
3
0
0
1
2
g
S1
0
p
r
S
P
R
g
g
p
g
3
0
2
3
p
r
C1
C2
C3
C0
S3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
S1
0
0
0
1
1
1
2
2
3
3
1
2
2
3
P
R
S
C0
C1
C2
C3
C1
C2
C3
C0
C1
C2
C3
C0
C1
C2
C3
C0
C1
C2
49Build a 4 x 256 rectangle
t 2
g
g
1
0
0
1
S3
0
p
r
g
S2
0
0
1
2
3
0
0
1
2
g
S1
0
p
r
S
P
R
g
g
p
g
3
0
2
3
p
r
C1
C2
C3
C0
S3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
S1
0
0
0
1
1
1
2
2
3
3
1
2
2
3
P
R
0
0
S
C0
C1
C2
C3
C1
C2
C3
C0
C1
C2
C3
C0
C1
C2
C3
C0
C1
C2
50Build a 4 x 256 rectangle
t 2
g
g
1
0
0
1
S3
0
p
r
g
S2
0
0
1
2
3
0
0
1
2
g
S1
0
p
r
S
P
R
g
g
p
g
3
0
2
3
p
r
C1
C2
C3
C0
P
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
P
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
3
P
3
3
2
1
2
1
1
0
1
0
0
R
P
3
3
C1
C2
C3
C0
C1
C2
C3
C0
C1
C2
C3
C0
C1
C2
C3
C0
C1
C2
C3
51Building k x N Rectangles
k-digit, base N(1/k) counter
k
N
Tile Complexity
522-temperature model
t 4
3
1
3
3
532-temperature model
t 4 6
542-temperature model
(our paper)
Kolmogorov Complexity
(Rothemund, Winfree STOC 2000)
Beats Standard Model
(our paper)
55Assembly of N x N Squares
56Assembly of N x N Squares
N - k
k
N - k
k
57Assembly of N x N Squares
Complexity
N - k
X
(Adleman, Cheng, Goel, Huang STOC 2001)
k
N - k
Y
k
58 N x N Squares --- Flexible Glue Model
Kolmogorov lower bounds
Standard
(Rothemund, Winfree STOC 2000)
Flexible
Standard Glue Function
Flexible Glue Function
a b c d e f a 1 0 2 0 0
1 b 0 0 1 0 1 0 c 0 0 3 0 1
1 d 2 2 2 2 0 1 e 0 0 0 1
2 1 f 1 1 2 2 1 1
a b c d e f a 1 - - -
- - b - 0 - - - - c - -
3 - - - d - - - 2 - - e
- - - - 2 - f - - - -
- 1
59N x N Square --- Flexible Glue Model
N log N
seed row
log N
60N x N Square --- Flexible Glue Model
N log N
Complexity
seed row
log N
61N x N Square --- Flexible Glue Model
goal - seed binary counter to a given
value -
0
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
log N
62N x N Square --- Flexible Glue Model
5
3
3
3
4
4
4
4
4
4
5
5
5
5
. . .
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
63N x N Square --- Flexible Glue Model
key idea
5
0 0 1 1 0 1 1 0 0 1
1 1 0
5
3
3
3
4
4
4
4
4
4
5
5
5
5
. . .
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
64N x N Square --- Flexible Glue Model
G(b4, p5) 1 G(b4, w5) 0
5
p5
5
5
5
5
w5
b4
4
5
3
2
1
65N x N Square --- Flexible Glue Model
5
- given B 011011 110101 010111
- encode B into glue function
p5
b4
4
p0 p1 p2 p3 p4 p5 b0 0 1 1
0 1 1 b1 1 1 0 1 0 1 b2
0 1 0 1 1 1 b3 0 0 1
0 1 0 b4 0 0 0 0 0 1 b5
1 1 1 1 1 0
B 011011 110101 010111
66N x N Square --- Flexible Glue Model
0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1
1 0 1 1 1 0 0 0 1 0 1
670 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1
1 0 1 1 1 0 0 1 1 1 0
0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1
1 0 1 1 1 0 0 1 1 0 1
0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1
1 0 1 1 1 0 0 1 1 0 0
0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1
1 0 1 1 1 0 0 1 0 1 1
0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1
1 0 1 1 1 0 0 1 0 1 0
0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1
1 0 1 1 1 0 0 1 0 0 1
0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1
1 0 1 1 1 0 0 1 0 0 0
0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1
1 0 1 1 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1
1 0 1 1 1 0 0 0 1 1 0
0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1
1 0 1 1 1 0 0 0 1 0 1
68N log N
2 x log N block
log N
69N log N
N log N
log N
log N
70X
N log N
Complexity
N log N
log N
log N
Y
71Our Tile Complexity Results
Multiple temperature model
k x N rectangles
(our paper)
beats standard model
(our paper)
Flexible Glue
N x N squares
(our paper)
(Adleman, Cheng, Goel, Huang STOC 2001)
beats standard model
72Molecular-scale pattern for a RAM memory with
demultiplexed addressing (Winfree, 2003)
73Outline
- Importance of DNA Self-Assembly
- Tile Self-Assembly (Generalized Models)
- Tile Complexity
- Shape Verification
- Error Resistance
- DNA Word Design
74Shape Verification
Unique Shape Problem Input T, a tile
system S, a shape
Question Does T uniquely assemble S.
Standard P (Adleman, Cheng, Goel,
Huang, Kempe, Flexible Glue P
Espanes, Rothemund, STOC 2002) Unique
Shape Co-NPC (our paper) Multiple
Temperature NP-hard (our paper) Multiple
Tile NP-hard (our paper)
753-SAT Problem
Clause 1 Clause 2 Clause 3
76Unique-Shape Model
77Unique-Shape Model
x3
x2
x1
78Unique-Shape Model
x3
x2
x1
c2
c1
c3
79Unique-Shape Model
1
x
x3
x
0
x
x2
x
x1
x
c2
c1
c3
80Unique-Shape Model
x3
1
x2
1
x1
0
c2
c1
c3
81Unique-Shape Model
x3
1
x2
1
x1
c1
0
c2
c1
c3
82Unique-Shape Model
x3
1
x2
ok
1
x1
c1
0
c2
c1
c3
83Unique-Shape Model
x3
ok
1
x2
ok
1
x1
c1
0
c2
c1
c3
84Unique-Shape Model
x3
ok
1
x2
ok
1
x1
c2
c1
0
c2
c1
c3
85Unique-Shape Model
x3
ok
1
x2
ok
c2
1
x1
c2
c1
0
c2
c1
c3
86Unique-Shape Model
x3
ok
ok
1
x2
ok
c2
1
x1
c2
c1
0
c2
c1
c3
87Unique-Shape Model
x3
ok
ok
1
x2
ok
c2
1
x1
ok
c2
c1
0
c2
c1
c3
88Unique-Shape Model
x3
ok
ok
ok
1
x2
ok
ok
c2
1
x1
ok
c2
c1
0
c2
c1
c3
89Unique-Shape Model
x3
ok
ok
ok
1
x2
ok
ok
c2
1
x1
ok
c2
c1
0
c2
c1
c3
90Unique-Shape Model
T
x3
ok
ok
ok
1
x2
ok
ok
c2
1
x1
ok
c2
c1
0
c2
c1
c3
91Unique-Shape Model
T
T
x3
ok
ok
ok
1
x2
ok
ok
c2
1
x1
ok
c2
c1
0
c2
c1
c3
92Unique-Shape Model
T
T
T
x3
ok
ok
ok
1
x2
ok
ok
c2
1
x1
ok
c2
c1
0
c2
c1
c3
93Unique-Shape Model
T
T
T
SAT
x3
ok
ok
ok
1
x2
ok
ok
c2
1
x1
ok
c2
c1
0
c2
c1
c3
Satisfied
(LaBean and Lagoudakis, 1999)
94Unique-Shape Model
T
T
T
SAT
x3
ok
ok
ok
1
x3
ok
c2
ok
0
x2
ok
ok
c2
1
x2
ok
ok
c2
1
x1
ok
c2
c1
0
x1
ok
c2
c1
0
c2
c1
c3
c2
c1
c3
Satisfied
(LaBean and Lagoudakis, 1999)
95Unique-Shape Model
T
T
T
SAT
T
x3
ok
ok
ok
1
x3
ok
c2
ok
0
x2
ok
ok
c2
1
x2
ok
ok
c2
1
x1
ok
c2
c1
0
x1
ok
c2
c1
0
c2
c1
c3
c2
c1
c3
Satisfied
(LaBean and Lagoudakis, 1999)
96Unique-Shape Model
T
T
T
SAT
T
F
x3
ok
ok
ok
1
x3
ok
c2
ok
0
x2
ok
ok
c2
1
x2
ok
ok
c2
1
x1
ok
c2
c1
0
x1
ok
c2
c1
0
c2
c1
c3
c2
c1
c3
Satisfied
(LaBean and Lagoudakis, 1999)
97Unique-Shape Model
T
T
T
SAT
T
F
F
x3
ok
ok
ok
1
x3
ok
c2
ok
0
x2
ok
ok
c2
1
x2
ok
ok
c2
1
x1
ok
c2
c1
0
x1
ok
c2
c1
0
c2
c1
c3
c2
c1
c3
Not Satisfied
Satisfied
(LaBean and Lagoudakis, 1999)
98Multiple Temperature Model
x3
x3
x2
x2
x1
x1
c1
c2
c3
c1
c2
c3
Not Satisfied
Satisfied
99Multiple Temperature Model
T
T
T
T
SAT
T
T
F
F
NO
x3
1
ok
ok
ok
x3
0
ok
c2
ok
x2
1
ok
c2
ok
x2
1
ok
c2
ok
x1
0
c1
c2
ok
x1
0
c1
c2
ok
c1
c2
c3
c1
c2
c3
Not Satisfied
Satisfied
100Multiple Temperature Model
T
T
T
T
SAT
T
T
F
F
NO
x3
1
ok
ok
ok
x3
0
ok
c2
ok
x2
1
ok
c2
ok
x2
1
ok
c2
ok
x1
0
c1
c2
ok
x1
0
c1
c2
ok
c1
c2
c3
c1
c2
c3
Not Satisfied
Satisfied
101Multiple Temperature Model
x3
x3
x2
x2
x1
x1
Not Satisfied
Satisfied
102Unique Shape Problem Results
Standard P Flexible Glue P Multiple
Temperature NP-hard Unique Shape Co-NPC Multip
le Tile NP-hard
(Adleman, Cheng, Goel, Huang, Kempe, Espanes,
Rothemund, STOC 2002)
(our paper)
(our paper)
(our paper)
103Outline
- Importance of DNA Self-Assembly
- Tile Self-Assembly (Generalized Models)
- Tile Complexity
- Shape Verification
- Error Resistance
- DNA Word Design
104Further Research
Error Resistance Insufficient Bindings
t 2
105Further Research
Error Resistance Insufficient Bindings
t 2
106Further Research
Error Resistance Insufficient Bindings
t 2
107Further Research
Error Resistance Insufficient Bindings
t 2
108Further Research
Error Resistance Insufficient Bindings
t 2
109Further Research
Error Resistance Insufficient Bindings
t 2
110Further Research
Error Resistance Insufficient Bindings
t 2
111Further Research
Error Resistance Insufficient Bindings
Standard
Fluctuating
b
temperature
a
112Further Research
113Further Research
114Further Research
115Further Research
116Outline
- Importance of DNA Self-Assembly
- Tile Self-Assembly (Generalized Models)
- DNA Word Design
117DNA Word Design
5
1
2
3
4
6
7
8
9
118DNA Word Design
5
1
2
3
4
6
7
8
9
green red yellow blue purple white black te
al
ACCT GAAA GCTA CGTA CTCG CATG ACGA TTTA
- Must be sufficiently
- different
- -Must have similar
- thermodynamic properties
- -Must be short
119Hamming Constraint (k)
ACCTGAGAGAGCTCGCGCAGCTGGCTCATTAGCAGACTGACAGCTTCGTA
GCATAGATAGCTGCATCGATTGCTAGCGTCAAGCAGCATTATAGATACGC
CCGTAGACTCGATCGAGTAGATCGATCGACGTAGGCTTTGCTGATGATTA
GGCGTTCAGCTGCGGCTATCGATGCGTAGCTAGAGTGCTGCTAGCTAGCT
AGTCACTCGATCGACTAGCTTCGATTAGCCGCGTAGCTGACTAGTCGATC
AGTCGCGCTTATATATATCGTAGTCTAGTCTACGATCGCTAGTC
X GCTTCGTAGCATAG Y
TTAGCCGCGTAGCT
n strings
HAMM(X,Y) 11 gt k
length L 14
120Free Energy Constraint
A C G T A 2 1 5 3 C 7 2 6 9 G 1 1 3 1 T 8 7 4 2
ACCTGAGAGAGCTCGCGCAGCTGGCTCATTAGCAGACTGACAGCTTCGTA
GCATAGATAGCTGCATCGATTGCTAGCGTCAAGCAGCATTATAGATACGC
CCGTAGACTCGATCGAGTAGATCGATCGACGTAGGCTTTGCTGATGATTA
GGCGTTCAGCTGCGGCTATCGATGCGTAGCTAGAGTGCTGCTAGCTAGCT
AGTCACTCGATCGACTAGCTTCGATTAGCCGCGTAGCTGACTAGTCGATC
AGTCGCGCTTATATATATCGTAGTCTAGTCTACGATCGCTAGTC
Pairwise free energies
n strings
length L 14
121Free Energy Constraint
A C G T A 2 1 5 3 C 7 2 6 9 G 1 1 3 1 T 8 7 4 2
ACCTGAGAGAGCTCGCGCAGCTGGCTCATTAGCAGACTGACAGCTTCGTA
GCATAGATAGCTGCATCGATTGCTAGCGTCAAGCAGCATTATAGATACGC
CCGTAGACTCGATCGAGTAGATCGATCGACGTAGGCTTTGCTGATGATTA
GGCGTTCAGCTGCGGCTATCGATGCGTAGCTAGAGTGCTGCTAGCTAGCT
AGTCACTCGATCGACTAGCTTCGATTAGCCGCGTAGCTGACTAGTCGATC
AGTCGCGCTTATATATATCGTAGTCTAGTCTACGATCGCTAGTC
Pairwise free energies
n strings
X AGCATTATAGATAC
FE(X) 517...
length L 14
122Free Energy Constraint
A C G T A 2 1 5 3 C 7 2 6 9 G 1 1 3 1 T 8 7 4 2
ACCTGAGAGAGCTCGCGCAGCTGGCTCATTAGCAGACTGACAGCTTCGTA
GCATAGATAGCTGCATCGATTGCTAGCGTCAAGCAGCATTATAGATACGC
CCGTAGACTCGATCGAGTAGATCGATCGACGTAGGCTTTGCTGATGATTA
GGCGTTCAGCTGCGGCTATCGATGCGTAGCTAGAGTGCTGCTAGCTAGCT
AGTCACTCGATCGACTAGCTTCGATTAGCCGCGTAGCTGACTAGTCGATC
AGTCGCGCTTATATATATCGTAGTCTAGTCTACGATCGCTAGTC
Pairwise free energies
n strings
X AGCATTATAGATAC
FE(X) 517...
For all strings X and Y FE(X) FE(Y) lt C
length L 14
123DNA Word Design
Word Design Problem Input integers n
and k Output n strings
of length L such that for all
strings X and Y 1) HAMM(X,Y) gt k
2) FE(X) FE(Y) lt C Minimize L
124DNA Word Design
Simple Lower Bound
L gt log n L gt k L gt ½(k log n)
125DNA Word Design
Word Length
Run-Time
126DNA Word Design
Hamming Constraint k
-Set L 5(k log n) -Generate all random
strings
PrFAILURE
All Random
length L 5(klog n)
127Free Energy Constraint
n
length L O(klog n)
128Free Energy Constraint
All length L strings
n
length L O(klog n)
129Free Energy Constraint
Low FE
All length L strings
n
length L O(klog n)
130Free Energy Constraint
Low FE
All length L strings
n
High FE
length L O(klog n)
131Free Energy Constraint
Low FE
All length L strings
n
High FE
length L O(klog n)
132Free Energy Constraint
All length L strings
n
length L O(klog n)
Fact Strings can be chosen to satisfy the Free
Energy Constraint
133Free Energy Constraint
For each string X a lt FE(X) lt b
n
How do you get these strings?
length L O(klog n)
134Free Energy Constraint
Given
135Free Energy Constraint
Given
Find
136Free Energy Constraint
Given
Find
a lt FE lt b
Problem 4L length L strings
137Free Energy Constraint
Fixed Energy String Problem Input
Length L, Energy E
Output a string with 1) length L 2) free
energy E
138Free Energy Constraint
Consider bases a,b in A,C,G,T
ci of length L strings such that 1) FE
i 2) First character is a 3) Last Character is b
a
b
L
139What if we knew
fLa,b, fL/2a,b, fL/4a,b, , f1a,b for all
a,b in A,C,G,T
140What if we knew
fLa,b, fL/2a,b, fL/4a,b, , f1a,b for all
a,b in A,C,G,T
a
b
L
141What if we knew
fLa,b, fL/2a,b, fL/4a,b, , f1a,b for all
a,b in A,C,G,T
a
b
c
d
FEc,d
L/2
L
142What if we knew
fLa,b, fL/2a,b, fL/4a,b, , f1a,b for all
a,b in A,C,G,T
SOLUTION in O(L log L) time complexity
a
b
c
d
FEc,d
L/2
L
143Recursive Property
a
b
c
d
FEc,d
L/2
L
144Recursive Property
T(L)
a
b
c
d
FEc,d
L/2
L
145Recursive Property
T(L) T(L/2)
a
b
c
d
FEc,d
L/2
L
146Recursive Property
T(L) T(L/2) L log L
a
b
c
d
FEc,d
L/2
L
147Recursive Property
T(L) T(L/2) L log L O(L
log L)
a
b
c
d
FEc,d
L/2
L
148Summary for Word Design
Hamming Constraint (k) -Randomly generate
words of length L O(k log n)
n
length L O(klog n)
149Summary for Word Design
Hamming Constraint (k) -Randomly generate
words of length L O(k log n)
Free Energy Constraint -Append new strings
n
length L O(klog n)
150Summary for Word Design
Hamming Constraint (k) -Randomly generate
words of length L O(k log n)
Free Energy Constraint -Append new strings
Run-Time
n
Word Length
length L O(klog n)
151DNA Self-Assembly
- Importance of DNA Self-Assembly
- Tile Self-Assembly
- DNA Word Design
Questions?