Title: The MIT Leg Lab: From Robots to Rehab
1(No Transcript)
2(No Transcript)
3(No Transcript)
4(No Transcript)
5(No Transcript)
6(No Transcript)
7(No Transcript)
8(No Transcript)
9The MIT Leg Lab From Robots to Rehab
10State Of The Art
11State of the Art Prosthetist defines knee
damping
Otto Bock C-Leg
12The MIT Knee A Step Towards Autonomy
13How The MIT Knee Works Mechanism
14How The MIT Knee WorksSensors
- Knee Position
- Axial Force
- Bending Moment
- Measured Local to Knee Axis (no ankle or foot
sensors)
Amputee can use vertical shock system
15How the MIT Knee Works Stance Control
Goal Early Stance Flexion Extension
16Stance Control Three States
- Stance Flexion Stance Extension
- A variable hydraulic damper
- Damping scales with axial load
- Late Stance
- Minimize damping
Toe-Loading to trigger late-stance zero damping
is automatically adjusted by system
17Stance Flexion
18How the MIT Knee Works Swing Control
Goal Control Peak Flexion Angle Terminal Impact
19Swing Control Flexion
20Swing Control Flexion
21Swing Phase Extension
- Extension damping adaptation
- Stage one
- Map tc versus impact force
- Apply appropriate damping
- Stage two
- Control final angle while minimizing impact force
Foot Contact Time
22The MIT Knee In Action
23Human Knees Brake and Thrust
Power (W/Kg)
Percent Gait Cycle
24Human Ankles are Smart Springs
Leg stiffness control in walking and running
humans
Variable stiffness foot-ankle systems
25Human Ankles are Powered
26Future of OP Leg Systems Intelligent
Application of Power
- Greater Distance Less Fatigue
- Natural Gait - Dynamic Cosmesis
- Enhanced Stability
- Increased Mobility
27Human Rehab A Road Map to the Future
Better Power Systems and Actuators
28Series-Elastic Actuators(Muscle-Tendon)
29Controlling Force, not Position
Weight 2.5 lbs. Stroke 3 in. Max. Force 300
lbs. Force Bandwidth 30 Hz
30Biomechatronics Group Hybrid Robots
- Nearly autonomous
- Controllable
- Swam 0.5 body length per second
31Human Rehab A Road Map to the Future
Improved Walking Models
32Low Stiffness Control Virtual Model Control
Language
- Passive walkers work using physical components
- Q Can active walker algorithms be expressed
using physical metaphors? - A Yes, and they perform surprisingly well
33Virtual Assistive Devices for Legged Robots
34Troody
35Technology
Science
What are the biological models for human walking?
Virtual Model Control
Active OP Leg Systems
36Human Rehab A Road Map to the Future
Distributed Sensing and Intelligence
37(No Transcript)
38Collaborators
Leg Laboratory Gill Pratt Biomechatronics
Group Robert Dennis (UM) Nadia Rosenthal
(MGH) Richard Marsh (NE) Spaulding Gait
Laboratory Casey Kerrigan Pat Riley
39Sponsors
- Össur
- DARPA
- Schaeffer Foundation
40Summary
Advances in the science of legged locomotion,
bioactuation, and sensing are necessary to step
towards the next generation of OP leg systems