Title: CSE 421 Algorithms
1CSE 421Algorithms
- Richard Anderson
- Lecture 13
- Divide and Conquer
2What you really need to know about recurrences
- Work per level changes geometrically with the
level - Geometrically increasing (x gt 1)
- The bottom level wins
- Geometrically decreasing (x lt 1)
- The top level wins
- Balanced (x 1)
- Equal contribution
3T(n) aT(n/b) nc
- Balanced a bc
- Increasing a gt bc
- Decreasing a lt bc
4Classify the following recurrences(Increasing,
Decreasing, Balanced)
- T(n) n 5T(n/8)
- T(n) n 9T(n/8)
- T(n) n2 4T(n/2)
- T(n) n3 7T(n/2)
- T(n) n1/2 3T(n/4)
5Divide and Conquer Algorithms
- Split into sub problems
- Recursively solve the problem
- Combine solutions
- Make progress in the split and combine stages
- Quicksort progress made at the split step
- Mergesort progress made at the combine step
6Closest Pair Problem
- Given a set of points find the pair of points p,
q that minimizes dist(p, q)
7Divide and conquer
- If we solve the problem on two subsets, does it
help? (Separate by median x coordinate)
d1
d2
8Packing Lemma
Suppose that the minimum distance between points
is at least d, what is the maximum number of
points that can be packed in a ball of radius d?
9Combining Solutions
- Suppose the minimum separation from the sub
problems is d - In looking for cross set closest pairs, we only
need to consider points with d of the boundary - How many cross border interactions do we need to
test?
10A packing lemma bounds the number of distances to
check
d
11Details
- Preprocessing sort points by y
- Merge step
- Select points in boundary zone
- For each point in the boundary
- Find highest point on the other side that is at
most d above - Find lowest point on the other side that is at
most d below - Compare with the points in this interval (there
are at most 6)
12Identify the pairs of points that are compared in
the merge step following the recursive calls
13Algorithm run time
- After preprocessing
- T(n) cn 2 T(n/2)
14Divide and Conquer Algorithms
- Mergesort, Quicksort
- Strassens Algorithm
- Closest Pair Algorithm (2d)
- Inversion counting
- Integer Multiplication (Karatsubas Algorithm)
- FFT
- Polynomial Multiplication
- Convolution
15Inversion Problem
- Let a1, . . . an be a permutation of 1 . . n
- (ai, aj) is an inversion if i lt j and ai gt aj
- Problem given a permutation, count the number of
inversions - This can be done easily in O(n2) time
- Can we do better?
4, 6, 1, 7, 3, 2, 5
16Counting Inversions
11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14
Count inversions on lower half Count inversions
on upper half Count the inversions between the
halves
17Count the Inversions
4
1
2
3
11 12 4 1
7 2 3 15
9 5 16 8
6 13 10 14
8
6
14
10
11 12 4 1 7 2 3 15
9 5 16 8 6 13 10 14
19
43
11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14
18Problem how do we count inversions between sub
problems in O(n) time?
- Solution Count inversions while merging
1 2 3 4 7 11 12 15
5 6 8 9 10 13 14 16
Standard merge algorithm add to inversion count
when an element is moved from the upper array to
the solution
19Use the merge algorithm to count inversions
1 4 11 12
2 3 7 15
5 8 9 16
6 10 13 14
Indicate the number of inversions for
each element detected when merging
20Inversions
- Counting inversions between two sorted lists
- O(1) per element to count inversions
- Algorithm summary
- Satisfies the Standard recurrence
- T(n) 2 T(n/2) cn
x x x x x x x x
y y y y y y y y
z z z z z z z z z z z z z z z z
21Integer Arithmetic
971548028394508438309485670104364384579021796
5702956767 12424310982340990573290750971798984
30928779579277597977
Runtime for standard algorithm to add two n digit
numbers
209506709303468099431859684686877940976671713
3476767930 X 59201750917776347096776793429290970
12308956679993010921
Runtime for standard algorithm to multiply two n
digit numbers
22Recursive Algorithm (First attempt)
x x1 2n/2 x0 y y1 2n/2 y0 xy (x1 2n/2
x0) (y1 2n/2 y0) x1y1 2n (x1y0
x0y1)2n/2 x0y0 Recurrence Run time
23Simple algebra
x x1 2n/2 x0 y y1 2n/2 y0 xy x1y1 2n
(x1y0 x0y1) 2n/2 x0y0 p (x1 x0)(y1
y0) x1y1 x1y0 x0y1 x0y0
24Karatsubas Algorithm
Multiply n-digit integers x and y Let x x1
2n/2 x0 and y y1 2n/2 y0 Recursively
compute a x1y1 b x0y0 p (x1 x0)(y1
y0) Return a2n (p a b)2n/2
b Recurrence T(n) 3T(n/2) cn
25FFT, Convolution and Polynomial Multiplication
- Preview
- FFT - O(n log n) algorithm
- Evaluate a polynomial of degree n at n points in
O(n log n) time - Computation of Convolution and Polynomial
Multiplication (in O(n log n)) time
26Complex Analysis
- Polar coordinates reqi
- eqi cos q i sin q
- a is a nth root of unity if an 1
- Square roots of unity 1, -1
- Fourth roots of unity 1, -1, i, -i
- Eighth roots of unity 1, -1, i, -i, b ib, b -
ib, -b ib, -b - ib where b sqrt(2)
27e2pki/n
- e2pi 1
- epi -1
- nth roots of unity e2pki/n for k 0 n-1
- Notation wk,n e2pki/n
- Interesting fact
- 1 wk,n w2k,n w3k,n . . . wn-1k,n 0
for k ! 0
28Convolution
- a0, a1, a2, . . ., am-1
- b0, b1, b2, . . ., bn-1
- c0, c1, c2, . . .,cmn-2 where ck Sijkaibj
29Applications of Convolution
- Polynomial Multiplication
- Signal processing
- Gaussian smoothing
- Sequence a1, a2, . . ., an
- Mask, w-k, w-(k-1), . . ., w-1, w0, w1, . . .,
wk-1, wk - Addition of random variables
30FFT Overview
- Polynomial interpolation
- Given n1 points (xi,yi), there is a unique
polynomial P of degree at most n which satisfies
P(xi) yi
31Polynomial Multiplication
n-1 degree polynomials A(x) a0 a1x a2x2
an-1xn-1, B(x) b0 b1x b2x2 bn-1xn-1
C(x) A(x)B(x) C(x)c0c1x c2x2
c2n-2x2n-2
p1, p2, . . ., p2n
A(p1), A(p2), . . ., A(p2n) B(p1), B(p2), . . .,
B(p2n)
C(p1), C(p2), . . ., C(p2n)
C(pi) A(pi)B(pi)
32FFT
- Polynomial A(x) a0 a1x . . . an-1xn-1
- Compute A(wj,n) for j 0, . . ., n-1
- For simplicity, n is a power of 2
33Useful trick
A(x) a0 a1x a2x2 a3x3 . . .
an-1xn-1 Aeven(x) a0 a2x a4x2 . . .
an-2x(n-2)/2 Aodd(x) a1 a3x a5x2
an-1x(n-2)/2 Show A(x) Aeven(x2) x Aodd(x2)
34Lemma w2j,2n wj,n
Squares of 2nth roots of unity are nth roots of
unity
wj,2n e2pji/2n
The detail of j gt n is being ignored dont
mention unless it comes up.
35FFT Algorithm
// Evaluate the 2n-1th degree polynomial A at //
w0,2n, w1,2n, w2,2n, . . ., w2n-1,2n FFT(A, 2n)
Recursively compute FFT(Aeven, n)
Recursively compute FFT(Aodd, n) for j
0 to 2n-1 A(wj,2n) Aeven(w2j,2n)
wj,2nAodd(w2j,2n)
36Polynomial Multiplication
- n-1th degree polynomials A and B
- Evaluate A and B at w0,2n, w1,2n, . . ., w2n-1,2n
- Compute C(wj,2n) for j 0 to 2n -1
- We know the value of a 2n-2th degree polynomial
at 2n points this determines a unique
polynomial, we just need to determine the
coefficients
37Now the magic happens . . .
- C(x) c0 c1x c2x2 c2n-1x2n-1
- (we want to compute the cis)
- Let dj C(wj,2n)
- D(x) d0 d1x d2x2 d2n-1x2n-1
- Evaluate D(x) at the 2nth roots of unity
- D(wj,2n) see text for details 2nc2n-j
38Polynomial Interpolation
- Build polynomial from the values of C at the 2nth
roots of unity - Evaluate this polynomial at the 2nth roots of
unity