Title: Quantitative phase estimation with a bright field microscope
1Quantitative phase estimation with a bright field
microscope
Sri Rama Prasanna Pavani, Ariel Libertun, Sharon
King, and Carol Cogswell Micro Optical Imaging
Systems Laboratory, ECE, University of Colorado
at Boulder http//moisl.colorado.edu
Frontiers in Optics 9/18/2007
2 Phase imaging What? How?
- Transparent (phase) objects modulate only the
phase of light - Convert phase modulations into detectable
intensity modulations
- Quantitative phase for weak phase objects
- No phase wrapping
- Halo and shading-off
- Only for thin objects
- Quantitative phase after reconstruction
- No phase wrapping
- Polarization sensitive
- Only for thin objects
- Multiple images
- Quantitative phase after reconstruction
- Thick phase objects
- Single image
- Vibration sensitive
- Phase wrapping
3Our method
- Amplitude mask in the field diaphragm
- Pattern is imaged on the sample
- Phase object distorts the pattern
- Record the distorted pattern
- Analytical formula calculates phase
Vs
0.2 0.1
(mm)
0.4 0.2
0 0.2 0.4
(mm)
(mm)
4Our method 1D
- Analytically relate deformation to the optical
path length - Consider a 1D phase object p(x)
- Ray R from point A, after refraction, appears as
if it originated from B - Deformation t(x) is the distance between A and B
Normal
Tangent
n2
p(x)
n1
A
B
t(x)
Pavani et al, Quantitative structured-illuminatio
n phase microscopy, submitted to Applied Optics,
June 07 Pavani et al, Structured-illumination
quantitative phase microscopy, CMB4, COSI 2007
5Our method 2D
1D deformations
After 1D integrations
C1 C2 . . CN
Quantitative Phase
2D deformation
K1 K2 KN
Pavani et al, Quantitative structured-illuminatio
n phase microscopy, submitted to Applied Optics,
June 07
6Simulation
X 100
18 9 0
5 0 -5
Calculated Phase
Quadratic phase
50 25 0
50 25 0
200 100
200 100
After 1D integrations
1D deformations
X 100
18 9 0
5 0 -5
0 100 200
0 100 200
Error
8 4 0 -4 -8
(nm)
Peak error is 5 orders less than peak phase
Error
0 100 200
7Experimental Results
X,Y Deformations
Dot shift
Original pattern
3 0 -3
360 180
0 240 480
Deformed pattern
3 0 -4
360 180
16.54
0 240 480
Quantitative phase
40 30 20 10 0
Profilometer Our method
Object Drop of optical cement
360 180
480 240 0
8Spatial Resolution
- Size and the spacing between dots
- Dots sampling the object must obey Nyquist
- Resolution enhancement by shifting
d
s
M
M
shift right
shift down
shift diagonally
N
N
- If dot size diffraction limited spot size,
quantitative phase imaging with the same
resolution as a bright field image is possible
9Spatial Resolution
- Size and the spacing between dots
- Dots sampling the object must obey Nyquist
- Resolution enhancement by shifting
d
s
M
M
shift right
shift down
shift diagonally
N
N
- If dot size diffraction limited spot size,
quantitative phase imaging with the same
resolution as a bright field image is possible
- Full resolution single image phase imaging with
multi-colored dots
10Phase resolution
Dot shift
- Smallest detectable change in path length
- Minimum deformation
w detector pixel width M magnification
- Trapezoidal numerical integration
s
x
x
Example
lt
w 7µm s 1µm
n1 1.5 n2 1
M 100x NA 0.9
Depth of field 753nm
11Conclusion
- Described wide field, full resolution
quantitative phase imaging in a bright field
microscope - Phase is calculated from deformation using an
analytical formula - Conservative calculations with a 100x objective
predict a phase resolution of 155nm
12Acknowledgements
- Prof. Rafael Piestun
- Prof. Gregory Beylkin
- Vaibhav Khire
CDMOptics PhD Fellowship
National Science Foundation Grant No. 0455408
13References
- J. W. Goodman, Introduction to Fourier Optics,
(Roberts Company, 2005) - M Pluta, Advanced Light Microscopy, vol 2
Specialised Methods, (Elsevier, 1989) - M. R. Arnison, K. G. Larkin, C. J. R. Sheppard,
N. I. Smith, C. J. Cogswell, Linear phase
imaging using differential interference contrast
microscopy Journal of Microscopy 214 (1), 712
(2004) - C. Preza, "Rotational-diversity phase estimation
from differential-interference-contrast
microscopy images," J. Opt. Soc. Am. A 17,
415-424 (2000) - Sharon V. King, Ariel R. Libertun, Chrysanthe
Preza, and Carol J. Cogswell, Calibration of a
phase-shifting DIC microscope for quantitative
phase imaging, Proc. SPIE 6443, 64430M (2007) - E. Cuche, F. Bevilacqua, and C. Depeursinge,
Digital holography for quantitative
phase-contrast imaging, Opt. Lett. 24, 291-293
(1999) - P. Marquet, B. Rappaz, P. J. Magistretti, E.
Cuche, Y. Emery, T. Colomb, and C. Depeursinge,
Digital holographic microscopy a noninvasive
contrast imaging technique allowing quantitative
visualization of living cells with subwavelength
axial accuracy, Opt. Lett. 30, 468-470 (2005) - M. Born and E. Wolf, Principles of Optics, ed. 7,
(Cambridge University Press, Cambridge, U.K.,
1999). - A. C. Kak, M. Slaney, Principles of Computerized
Tomographic Imaging, (IEEE Press, New York, NY,
1988) - A. C. Sullivan, Department of Physics, University
of Colorado, Campus Box 390, Boulder, CO 80309,
USA and R. McLeod are preparing a manuscript to
be called Tomographic reconstruction of weak
index structures in volume photopolymers. - Huang D, Swanson EA, Lin CP, Schuman JS, Stinson
WG, Chang W, Hee MR, Flotte T, Gregory K,
Puliafito CA, et al., Optical coherence
tomography, Science1991 Nov 22254(5035)1178-81.
- A. F. Fercher, C. K. Hitzenberger, Optical
coherence tomography, Chapter 4 in Progress in
Optics 44, Elsevier Science B.V. (2002) - A. F. Fercher, W. Drexler, C. K. Hitzenberger and
T. Lasser, Optical coherence tomography -
principles and applications, Rep. Prog. Phys. 66
239303 (2003) - M. R. Ayres and R. R. McLeod, "Scanning
transmission microscopy using a
position-sensitive detector," Appl. Opt. 45,
8410-8418 (2006) - Barone-Nugent, E., Barty, A. Nugent, K.
Quantitative phase-amplitude microscopy I
optical microscopy, J. Microsc. 206, 194203
(2002). - J. Hartmann, "Bemerkungen uber den Bau und die
Justirung von Spektrographen," Z. Instrumentenkd.
20, 47 (1900). - I. Ghozeil, Hartmann and other screen tests, in
Optical Shop Testing, D. Malacara, second edition
Wiley, New York, 1992, pp. 367396. - R. V. Shack and B. C. Platt, Production and use
of a lenticular Hartmann screen, J. Opt. Soc.
Am. 61, 656 (1971). - V. Srinivasan, H. C. Liu, and M. Halioua,
Automated phase-measuring profilometry of 3-D
diffuse objects, Appl. Opt. 23, 3105- (1984)
14Applications and Future work
- Industrial inspection, biological imaging
- Extracting information from axial deformation
- Extending the depth of field of the system
- Fabrication of an amplitude mask with higher
spatial resolution
15Our method How?
1 Dimensional analysis
(from geometry)
(Snells law,
)
(Taylor expansion)
C 2 (C2 C1)
16Our method How?
M
2 Dimensional analysis
N
Apply 1D solution along x and y to obtain
and
P2
17Metrology - Cubic phase mask
120 80 40 0
360 180
480 240 0
Deformation
Quantitative OPL profile
140 70 0
Cubic phase mask
360 180
480 240 0
Deformation
Quantitative OPL profile