Title: Service Quality Regulation in Electricity Distribution
1 Service Quality Regulation in Electricity
Distribution
- Necmiddin BAGDADIOGLU
- Orçun SENYÜCEL
2Objectives
- Incorporate service quality measure into
electricity regulation. New in literature
Growitsch et al (2008), Coelli et al (2008-Draft)
- Determine technical efficiency of Turkish
electricity distribution utilities - Focus on exogeneous determinants of inefficiency
- Analyze effects of electricity losses and illegal
usage on TE.
3Turkish Electricity Reform
- Electricity Sector Reform and Privatization
Strategy Paper (2004) TEDAS ? 2012 - Transitory period 20 utilites through mergers of
79 distribution utilities. - ESRPSP mergers determined by operational
problems, technical financial features. - Turkey accession country. EU Energy Acquis
- EMRA has not announced regulatory framework
4Briefly SFA v DEA
- Average Cost (all noise)
Syrjanen, M., P. Bogetoft, P. Agrell (2006)
5Briefly SFA v DEA
- Deterministic frontier (all ineff ? u)
Syrjanen, M., P. Bogetoft, P. Agrell
(2006)
6Briefly SFA v DEA
- Stochastic frontier (both noise v and
ineff u) Syrjanen, M., P. Bogetoft, P.
Agrell (2006)
7Briefly SFA
- Two component error terms, first captures
statistical noise - Second captures effects of TE.
-
- Half normal, exponential, truncated dist.
8Distance Functions
- DF Distance of the prod to PPB
- Two different types input output DF
- Input DF How much input vector can be contracted
(output constant) - Output Vice versa.
9Distance Functions
Kumbhakar Lovell (2003)
10Distance Functions
- Deviations from 1 is technical inefficiency
- h(.) represents deviation ?exp (-u)
- exp (-u) one of the component error terms.
11Distance Functions
- Adding random error term, imposing homogeneity
rest. - We preffered translog input DF.
12Methodology
- Following Coelli, (M outputs K inputs)
13Methodology
- Following Coelli and Battese,
- Two environmental variables
14Models
- Model I Input TOTEXLIEU (TOTEXL)
- Model II Input Interruption Time (ITC)
- Output Energy supplied (ENG) and number of
customers (CUST) - Environmental factors
- Village Cust Density (VCD)
- Geographic Conditions (GEO)
15Model I
16Model II
17Descriptive Statistics
Variable Obs Mean Std. Dev. Min Max
TOTEXL (million TL) 120 160 159 30 891
Energy Supplied (GWh) 120 4744 3596 628 17987
Number of customers (000) 120 1376 812 323 3719
ITC 120 2.60 2.14 0.07 11.88
VCD 120 0.216 0.106 0 0.419
18Model I
Variables Coefficient t-ratio
Constant 0.5223 0.7
ln ENG (y1) -0.3429 -2.8
ln CUST (y2) -0.7294 -4.8
y12 -0.1342 -0.3
y22 -1.0085 -1.5
y1y2 0.3645 0.7
VCD 3.8507 2.0
GEO 6.4172 1.7
0.6373 2.8
0.9023 23.5
LLF -36.0925
Note , and denotes significance at the
1, 5 and 10 levels.
19Model I
RTS0.93
20Model II
Variables Coefficient t-ratio
Constant 0.6918 13.2
ln ENG (y1) -0.3988 -3.1
ln CUST (y2) -0.5408 -3.7
y12 -0.2412 -0.4
y22 -1.6727 -2.3
y1y2 0.7813 1.3
ln (ITC/TOTEXL) 0.2745 6.4
ln(ITC/TOTEXL)2 0.1682 2.7
ln (ITC/TOTEXL)y1 -0.1434 -1.0
ln (ITC/TOTEXL)y2 0.3120 2.9
VCD 5.8604 4.4
GEO 1.5384 6.3
0.2293 3.3
0.9129 19.8
LLF 12.7273
Note , and denotes significance at the
1, 5 and 10 levels.
21Model II
RTS1.06
22Average efficiency scores
QoS has significant effect TE decreased by
16.5 LLR test also states QoS important
Quality excluded model Quality included model
Small utilities 0.60 0.43
Medium utilities 0.91 0.77
Large utilities 0.91 0.84
Total 0.79 0.65
23Average efficiency scores
Utility Quality excluded Quality included Quality included (Cost of Losses Excluded) Losses and Illegal Usage ()
Dicle Edas 0.11 0.10 0.50 62.04
Vangolu Edas 0.16 0.12 0.47 61.95
Aras Edas 0.33 0.19 0.48 31.71
Coruh Edas 0.87 0.40 0.75 13.70
Firat Edas 0.64 0.47 0.52 14.67
Camlibel Edas 0.89 0.67 0.81 10.52
Toroslar Edas 0.90 0.79 0.95 15.38
Meram Edas 0.90 0.71 0.89 8.58
Baskent Edas 0.91 0.77 0.95 11.26
Akdeniz Edas 0.89 0.78 0.92 11.21
Gediz Edas 0.93 0.89 0.98 7.62
Uludag Edas 0.93 0.91 0.93 9.09
Trakya Edas 0.89 0.72 0.89 10.52
AYEDAS 0.93 0.93 1.00 10.80
Sakarya Edas 0.92 0.84 0.94 12.33
Osmangazi Edas 0.93 0.87 0.94 7.42
Bogazici Edas 0.90 0.87 1.00 17.32
Menderes Edas 0.91 0.78 0.87 9.66
Goksu Edas 0.92 0.80 0.83 10.78
Yesilirmak Edas 0.89 0.48 0.81 12.28
24Conclusion
- QoS impact on TE. GEO VCD are crucial
environmental variables. - Excl. losses and illegal electricity usage
overestimates TE. - Privatization Eight utilities are established
far from the optimal size and have low average
efficiency scores (0.43). TPA may merge other six
utilities.