A Discriminatively Trained, Multiscale, Deformable Part Model - PowerPoint PPT Presentation

1 / 36
About This Presentation
Title:

A Discriminatively Trained, Multiscale, Deformable Part Model

Description:

... Robert E. Schapire Deva Ramanan Assistant Professor, Department of Computer Science , University of California at Irvine PhD from UC Berkeley, ... – PowerPoint PPT presentation

Number of Views:40
Avg rating:3.0/5.0
Slides: 37
Provided by: Shuf5
Category:

less

Transcript and Presenter's Notes

Title: A Discriminatively Trained, Multiscale, Deformable Part Model


1
A Discriminatively Trained, Multiscale,
Deformable Part Model
  • ??? ??

2
??
  • ????
  • ????
  • ????
  • ?????
  • ???????
  • ???????
  • ??????
  • ??????
  • ?????????
  • ????
  • HOG????
  • ???
  • ????
  • ??

3
????
  • Pedro Felzenszwalb
  • Associate Professor at Department of Computer
    Science, University of Chicago
  • Courses AI, CV, statistical model
  • Professional activitiesAC (ICCV, CVPR, ECCV),
    AE(PAMI), EB(IJCV)
  • David McAllester
  • Professor and Chief Academic Officer, Toyota
    Technological Institute at Chicago
  • AAAI, fellow
  • Collaborated with Peter Bartlett, Robert E.
    Schapire
  • Deva Ramanan
  • Assistant Professor, Department of Computer
    Science , University of California at Irvine
  • PhD from UC Berkeley, advised by David Forsyth
  • Marr Prize 2009Discriminative models for
    multi-class object layout

4
??
  • ????
  • ????
  • ????
  • ?????
  • HOG????
  • ???????
  • ???????
  • ??????
  • ??????
  • ?????????
  • ????
  • ???
  • ????
  • ??

5
????
  • Object Detection with Discriminatively Trained
    Part Based Models. To appear in PAMI.
  • ???????,(1)SVM????(2)mixtured models(3)?????(4)???
  • Cascade Object Detection with Deformable Part
    Models. In CVPR,2010.
  • ???????????????????????
  • Discriminative models for multi-class object. In
    ICCV, 2009.
  • ????????,?????????????????????
  • Distance Transforms of Sampled Functions. In TR,
    2004.
  • ?????????????????,?????????????,????????????????,?
    ?????????

6
??
  • ????
  • ????
  • ????
  • ?????
  • ???????
  • ???????
  • ??????
  • ??????
  • ?????????
  • ????
  • HOG????
  • ???
  • ????
  • ??

7
????(1/2)
  • 1. This paper describes a discriminatively
    trained, multiscale, deformable part model for
    object detection. Our system achieves a two-fold
    improvement in average precision over the best
    performance in the 2006 PASCAL person detection
    challenge. It also outperforms the best results
    in the 2007 challenge in ten out of twenty
    categories. .
  • 2. The system relies heavily on deformable
    parts. While deformable part models have become
    quite popular, their value had not been
    demonstrated on difficult benchmarks such as the
    PASCAL challenge. Our system also relies heavily
    on new methods for discriminative training. We
    combine a margin-sensitive approach for data
    mining hard negative examples with a formalism we
    call latent SVM. A latent SVM, like a hidden CRF,
    leads to a non-convex training problem. However,
    a latent SVM is semi-convex and the training
    problem becomes convex once latent information is
    specified for the positive examples.
    .
  • 3. We believe that our training methods will
    eventually make possible the effective use of
    more latent information such as hierarchical
    (grammar) models and models involving latent
    three dimensional pose. .

8
????(2/2)
  • 1. ?????????????????????????????????????VOC20
    06????????????20??VOC2007?????20???10????????????
    ???????
    .
  • 2. ???????????????????????????,????????PASCAL
    ??????????????????????????????????????????????(mar
    gin-sensitive)????????latent SVM??????????????????
    Latent SVM?????????,???????????????latent
    SVM???????,???latent???????????,????????????

    .
  • 3. ??????????????????????????latent???????,??
    ??(??)??,??latent??????
    .

9
??
  • ????
  • ????
  • ????
  • ?????
  • ???????
  • ???????
  • ??????
  • ??????
  • ?????????
  • ????
  • HOG????
  • ???
  • ????
  • ??

10
???????(1/3)
  • ?????

11
???????(2/3)
  • ????

???????????????,???????,????????????????,?????????
???????
12
???????(3/3)
  • ??????

???????,????HOG?????????,????????
13
???????(1/2)
  • ????,?????????

????
14
???????(2/2)
15
??????(1/3)
  • Latent SVM

16
??????(2/3)
  • ??????(?)

17
??????(3/3)
  • ??????(?)

18
??????(1/3)
  • Latent SVM????

19
??????(2/3)
  • ??coordinate decent??

20
??????(3/3)
  • SVM?????
  • Sequential Minimization Optimization(libSVM)
  • Stochastic gradient descent

21
?????????
22
????(1/2)
23
????(2/2)
24
HOG????(1/4)
  • ???????
  • ??x,y?????,??????9???
  • ????(spatial aggregation)
  • ?????
  • ???
  • ????block???cell??????
  • ??
  • ??????????????0

25
HOG????(2/4)
  • PCA??(3613,PAMI???)
  • ?11??????????36??????
  • ???????,?????11?????
  • ?????????????????????,???9????????????????HOG????,
    ???????9?????????4???,????9????4?cell?????,??4?cel
    l??9????????

26
HOG????(3/4)
  • ????(1331,PAMI???)
  • ?????9???,??????????????18???,??PCA???????????(??
    ???????18???)????4x9-gt4913,????4x27-gt42731???,
    ????????13?,27????4?cell??????4?cell?27????????

27
HOG????(4/4)
  • ????(PAMI???)
  • ???????????????????????????????????(sin?cos),?????
    ???????????????????,?????????
  • ??????????(FFT)????????????,??dd????????????,???
    ???k,??
    ????????????????????????????
  • ???????????????,??????????????,?????????????????b
    in,????4?cell????

28
???
  • Bounding box??
  • ??????
  • ????,?????????????
  • ?????

29
????(1/2)
  • Mixture models???????

30
????(2/2)
  • ?VOC????????

2006
2007
2008
31
??
  • ????
  • ????
  • ????
  • ?????
  • HOG????
  • ???????
  • ???????
  • ??????
  • ??????
  • ?????????
  • ????
  • ???
  • ????
  • ??

32
??
  • ????
  • ?????????????
  • ?????????????
  • ????????????
  • ????
  • ??????????????????
  • ?mixture model?????????
  • ????????????(mixture model)

33
?????????
34
Distance Transforms of Sampled Functions
  • ????????????????????

??
35
Cascade Object Detection with Deformable Part
Models
  • ?CVPR2008??,????????????????
  • ????cascade??,??????????,??Probability
    Approximately Admissible ????

36
??!
Write a Comment
User Comments (0)
About PowerShow.com