Title: Quantitative Methods
1Quantitative Methods
2Regression
Examples for linear regression
- Do more brightly coloured birds have more
parasites? - How should we estimate merchantable volume of
wood from the height of a living tree? - How is pest infestation late in the season
affected by the concentration of insecticide
applied early in the season?
3Regression
Similarities to analysis of variance
4Regression
Geometry
y
Y
M
x
5Regression
Geometry
y
Y
M
x
6Regression
Geometry
y
Y
M
x
7Regression
Geometry
y
Y
M
x
8Regression
Geometry
y
Y
M
x
9Regression
Geometry
y
Y
M
x
10Regression
Geometry
y
Y
M
F1
x
11Regression
Geometry
y
Y
M
F1
x
12Regression
Geometry
y
Y
M
F1
x
Sum of squares of residuals Squared distance
from Y to F1
13Regression
Geometry
y
Y
M
x
14Regression
Geometry
y
Y
M
F1
F2
F3
x
15Regression
Geometry
y
Y
M
F1
F2
F3
x
16Regression
Geometry
17Regression
Geometry
18Regression
Minitab commands
19Regression
Minitab commands
20Regression
Minitab commands
21Regression
Minitab commands
Minitab Supplement is in a PDF file in the same
directory as the dataset.
22Regression
Regression Output
23Regression
Regression Output
24Regression
Regression Output
25Regression
Confidence intervals and t-tests
26Regression
Confidence intervals and t-tests
estimate tcrit ? Standard Error of estimate
Coef tcrit (on 29 DF) ? SECoef
1.5433 2.0452 ? 0.3839 (0.758, 2.328)
tcrit is always on Error degrees of freedom
27Regression
Confidence intervals and t-tests
28Regression
Confidence intervals and t-tests
t distance between estimate and hypothesised
value, in units of standard error
29Regression
Confidence intervals and t-tests
30Regression
Confidence intervals and t-tests
31Regression
Regression output
32Regression
Regression output
33Regression
Extreme residuals
34Regression
Outliers
35Regression
Regression output
36Regression
Four possible outcomes
Low p-value significant
High p-value non-significant
Low R-sq
High R-sq
37Regression
Difference from analysis of variance
Continuous vs Categorical
- Continuously varying
- Values have meaning as numbers
- Values are ordered
- Interpolation makes sense
- Examples
- height
- concentration
- duration
- Discrete values
- Values are just names that define subsets
- Values are unordered
- Interpolation is meaningless
- Examples
- drug
- breed of sheep
- sex
38Regression
Why linear?
- Not because relationships are linear
- Good simple starting point - cf recipes
- Approximation to a smoothly varying curve
39Regression
Last words
- Regression is a powerful and simple tool, very
commonly used in biology - Regression and ANOVA have deep similarities
- Learn the numerical skills of calculating
confidence intervals and testing for non-zero
slopes.
40Regression
Last words
- Regression is a powerful and simple tool, very
commonly used in biology - Regression and ANOVA have deep similarities
- Learn the numerical skills of calculating
confidence intervals and testing for non-zero
slopes.
Next week Models, parameters and GLMs Read
Chapter 3