Quantitative Methods - PowerPoint PPT Presentation

About This Presentation
Title:

Quantitative Methods

Description:

Quantitative Methods Regression Quantitative Methods Regression Regression Outliers Regression Regression output Regression Low R-sq High R-sq Low p-value ... – PowerPoint PPT presentation

Number of Views:53
Avg rating:3.0/5.0
Slides: 41
Provided by: AlanG85
Category:

less

Transcript and Presenter's Notes

Title: Quantitative Methods


1
Quantitative Methods
  • Regression

2
Regression
Examples for linear regression
  • Do more brightly coloured birds have more
    parasites?
  • How should we estimate merchantable volume of
    wood from the height of a living tree?
  • How is pest infestation late in the season
    affected by the concentration of insecticide
    applied early in the season?

3
Regression
Similarities to analysis of variance
4
Regression
Geometry
y
Y
M
x
5
Regression
Geometry
y
Y
M
x
6
Regression
Geometry
y
Y
M
x
7
Regression
Geometry
y
Y
M
x
8
Regression
Geometry
y
Y
M
x
9
Regression
Geometry
y
Y
M
x
10
Regression
Geometry
y
Y
M
F1
x
11
Regression
Geometry
y
Y
M
F1
x
12
Regression
Geometry
y
Y
M
F1
x
Sum of squares of residuals Squared distance
from Y to F1
13
Regression
Geometry
y
Y
M
x
14
Regression
Geometry
y
Y
M
F1
F2
F3
x
15
Regression
Geometry
y
Y
M
F1
F2
F3
x
16
Regression
Geometry
17
Regression
Geometry
18
Regression
Minitab commands
19
Regression
Minitab commands
20
Regression
Minitab commands
21
Regression
Minitab commands
Minitab Supplement is in a PDF file in the same
directory as the dataset.
22
Regression
Regression Output
23
Regression
Regression Output
24
Regression
Regression Output
25
Regression
Confidence intervals and t-tests
26
Regression
Confidence intervals and t-tests
estimate tcrit ? Standard Error of estimate
Coef tcrit (on 29 DF) ? SECoef
1.5433 2.0452 ? 0.3839 (0.758, 2.328)
tcrit is always on Error degrees of freedom
27
Regression
Confidence intervals and t-tests
28
Regression
Confidence intervals and t-tests
t distance between estimate and hypothesised
value, in units of standard error
29
Regression
Confidence intervals and t-tests
30
Regression
Confidence intervals and t-tests
31
Regression
Regression output
32
Regression
Regression output
33
Regression
Extreme residuals
34
Regression
Outliers
35
Regression
Regression output
36
Regression
Four possible outcomes
Low p-value significant
High p-value non-significant
Low R-sq
High R-sq
37
Regression
Difference from analysis of variance
Continuous vs Categorical
  • Continuously varying
  • Values have meaning as numbers
  • Values are ordered
  • Interpolation makes sense
  • Examples
  • height
  • concentration
  • duration
  • Discrete values
  • Values are just names that define subsets
  • Values are unordered
  • Interpolation is meaningless
  • Examples
  • drug
  • breed of sheep
  • sex

38
Regression
Why linear?
  • Not because relationships are linear
  • Good simple starting point - cf recipes
  • Approximation to a smoothly varying curve

39
Regression
Last words
  • Regression is a powerful and simple tool, very
    commonly used in biology
  • Regression and ANOVA have deep similarities
  • Learn the numerical skills of calculating
    confidence intervals and testing for non-zero
    slopes.

40
Regression
Last words
  • Regression is a powerful and simple tool, very
    commonly used in biology
  • Regression and ANOVA have deep similarities
  • Learn the numerical skills of calculating
    confidence intervals and testing for non-zero
    slopes.

Next week Models, parameters and GLMs Read
Chapter 3
Write a Comment
User Comments (0)
About PowerShow.com