Title: Andrew Wallace MEng (Hons) AMIEE
1Andrew Wallace MEng (Hons) AMIEE Regional Sales
Specialist
2(No Transcript)
3Electromagnetic Spectrum
10km 100m 1m 1cm 100mm 1mm 100A 1A
100km 1 km 100m 10cm 1mm 10mm 0.1mm 10A
ELF VLF LF MF HF VHF UHF SHF
EHF
UV
X-rays
Milli- meter
Microwave
Infrared
3 x 102
3 x 1017
3 x 1015
3 x 1013
3 x 1011
3 x 109
3 x 107
3 x 105
3 x 106
3 x 1010
3 x 108
3 x 1012
3 x 1014
3 x 1016
3 x 104
3 x 1018
4Microwave Systems
5Transmission Lines
6Coaxial Conductors
Outer Conductor
Half Wavelength
Inner Conductor
Er
a
Electric Field
Magnetic Field
b
Impedance Z 138 log10 b ÖEr a
7Stripline Conductors
Dielectric material
Copper / gold strip
Metallic ground strip
Ground Plane
8Microstrip Conductors
Ground Plane
Copper / gold strip
Dielectric material
Metallic ground strip
Ground Plane
9Wave Propagation
10Waveguide Types
11Why 50W Connectors
1.4
Attenuation is
lowest at
77W
1.2
50W standard
Normalized
Values
1
0.8
Power handling
capacity peaks
at 30W
0.6
1
20
30
40
50
60
70
100
Characteristic Impedance (W)
12Coaxial Connectors
13Connector Standards
GPC 14 14 mm 50 DC to 8.5 GHz IEEE 287
75 DC to 2 GHz IEC 457 Type N 7 mm 50 DC
to 18 GHz Mil-C-39012 75 DC to 2 GHz BS
9210 BNC/TNC 7 mm 50 DC to 4 GHz Mil-C-39012
75 DC to 2 GHz BS 9210 Precifix AA 7
mm 50 DC to 18 GHz IEEE 287 IEC 457 GPC
7 7 mm 50 DC to 18 GHz IEEE 287 IEC
457 SMA 4 mm 50 DC to 26 GHz Mil-C-39012
BS 9210 GPC 3.5 3.5 mm 50 DC to 34
GHz Type K 2.92 mm 50 DC to 46 GHz
14Connector Types
15Connector Handling
16Terminations
17Attenuators
18Limiters
Pout Watt
Pin Watt
19Filters
20Directional Couplers
C
Coupled
Input
Through
A
B
21Directional Couplers
22Bridges Autotesters
Source
Vdetector Const Const G
23Autotester
24(No Transcript)
25Power Splitter
Output
50W
Input
50W
Output
26Wilkinson Resistive Power Dividers
Output A
Input
100W
Loss 3dB
Output B
16.66 W
Output A
Input
16.66W
Loss 6dB
Output B
16.66W
27Circulators Isolators
A
B
Low loss A to B B to C C to A
High loss A to C C to B B to A
C
28PIN Devices
W
P
I
N
W Width Of Layer I
29The YIG Oscillator
30YIG Frequency
31Travelling Wave Tubes (TWT)
Focusing Magnet
Cathode
Collector
Microwave Signal
Electron Flow
Focusing Magnet
R.F. O/P
Axial Velocity Of Electron Microwave
Signal _at_ Velocity
32Antennas
33Antennas
34Tea Time
35(No Transcript)
362-Port Scalar Analysis
VINC
VTRANS
DUT
VREF
37Scalar Measurement Coefficients
- What quantities can be measured by a Scalar
Network Analyzer? - Insertion Loss/Gain
- Return Loss, VSWR (Reflection Coefficient)
- Relationship between reflection expressions
- t magnitude of transmission coefficient
- r magnitude of reflection coefficient
(Biggest 1 , Smallest 0) - VSWR 1 r Return Loss -20 log10(r) dB
- 1 - r
- r G t T
-
38Return Loss - Some Typical Values
Return loss
VSWR
Short / Open circuit
0dB
1
Matched load
1
Theory
dB
0
1.02
Practice
40dB
0.01
1.1 - 1.5
Matched antenna (Broadband)
14 - 26dB
0.05 - 0.2
1.5
Typical component
14dB
0.2
lt1.1
Adapter (Co-ax)
gt26dB
lt0.05
1.1 - 1.5
Waveguide / Co-ax transition
14 - 26dB
0.05 - 0.2
1.04 - 1.1
Waveguide flange
26 - 34dB
0.02 - 0.05
39Scalar Analyzer Block Diagram
Display
Detector
Ramp Generator
Source
40Frequency Response
Basic System - Single Detector
41Simple Return Loss Measurement
DUT
RF OUT
Coupled
Detector
port
42Return Loss and Insertion Loss
Basic system - Autotester and Detector
43Sources Of Error
A
B
C
A
C
B
Adapter
RF
DUT
Wanted Reflected Signal
Wanted Reference Signal
Load Match
Adapter
Wanted Transmitted Signal
Source Match
Test Port Match
Directivity
44Transmission Errors - Frequency Response
Detector Frequency Response
Frequency Response Of Cables
45Transmission Errors - Source Load Match
Calibration
Detector
lo
DUT
rs
rd
r1
r2
Transmission Uncertainty (worst case) u (rs
rd) (rs r1 lo ) (rd r2 lo) (rs r1
r2 rd lo) or in dB 20 log10 (1 u)
46Reflection Errors - Frequency Response
Autotester test port frequency response
Autotester
47Reflection Errors - Directivity Source Match
Where ra Actual Reflection Coefficient
rm Measured Reflection Coefficient rs
Test Port Match D Directivity
rs D
48Use Of Adapters
49Waveguide Return Loss - single coupler
Single coupler solution
50Waveguide Return loss - dual coupler
Dual couplers measure incident and reflected power
51Antenna Return Loss
P
X
P
X
Interference
P
X
P
INC
P
REF
52AC Detection
P
X
P
REF
P
X
Interference
P
X
P
REF
X
P
INC
53Frequency and Time Domain
Frequency Domain
Measure Power Spectrum Insertion
loss Return loss Group delay Defines if
the system is working
Time Domain
Identifies the position of the fault
54Installation and Maintenance
Loose Connection
Damaged Cable
55Installation and Maintenance
Control Room
Fault
Waveguides
Transmitter
/receiver
56Real Pulse TDR
Sampling Oscilloscope
Step-function Generator
DUT
Sampling Gate
57STDR Using a Scalar Analyzer
Scalar Analyzer
Detector
Vo 2
Vo 4
exp (j2pbL)
Fault at distance L reflection coefficient G
Vo
Swept Frequency Source
Divider
LOAD
L
58Frequency Domain To Time Domain Conversion
F(f) is the complex reflection coefficient in
the frequency domain
Frequency
0
F(t)
-dB
F(t) is the reflection coefficient in the time
domain for an impulse excitation
1
f(t)
0
Time
59Advantages of Synthetic TDR
- Higher RESOLUTION
- Capable of eliminating effects of DISPERSION
- Excitation BANDWIDTH known exactly
- Full oscillator OUTPUT POWER for all spectral
components - Free choice of start and stop frequencies for
BANDPASS measurements
60Fault Location Range
Range (ns) Number of Frequency Points 4 x
Bandwidth If the bandwidth is in units of GHz
then the range is in nanoseconds. Convert to
distance by multiplying by 3 x 108 x Vr
61Fault Location Resolution
Maximum available resolution is given
by Resolution 1.21
Bandwidth This is the time difference
between two discontinuities which are just
separable Resolution is NOT point spacing.
62Fault Location In Coax
63Fault Location In Waveguides
Detector
3-Resistor Power Divider
Waveguide Calibration Load
Coax to Waveguide Adapter
64Dispersion
In dispersive transmission lines wavelength
is not inversely proportional to frequency. Thus
the
period of the observed ripples will vary
Frequency
Fourier Transform
Time
This leads to impulse spreading
65Non-Linear Sweep
Coax Line Single Fault Linear Sweep
0
Frequency
Waveguide Single Fault Non-Linear Sweep
0
Frequency
66Lunch
67(No Transcript)
68Signal Analysis
Amplitude
Frequency
Time
Amplitude
Amplitude
Time
Frequency
Frequency domain
Spectrum Analyzer
69Oscilloscope Display
Time
1/ Fm
modulation
70Spectrum Analyzer Display
Carrier
Upper
sideband
Lower
sideband
Modulation
frequency F
m
F
c
F
F F
F - F
c
m
c
m
c
71Spectrum Analyzer Block Diagram
Detector
Log
Mixer
Amp
IF
IF Amplifier
Filters
Input Attenuator
Video
Filters
Voltage
Ramp
controlled
generator
oscillator
Display
72Microwave Spectrum Analyzer
Harmonic Mixer and Tracking Preselector
RF Input
IF
output
X2
X3
X4
X1
Local
oscillator
73Preselected
Fundamental
2nd Harmonic
3rd Harmonic
74Microwave Spectrum Analyzer
Input
To 479.3
4.5 - 9.2 GHz
MHz IF
'Fundamental'
Mode
4.5 GHz
4.96 GHz
4.48 GHz
75Harmonic Distortion
Amplitude
Frequency
3Fc
Fc
2Fc
76A practical example illustrates the method
Harmonic Number Carrier Voltage
Ratio 2 -30dB 1/32 3 -38dB 1/79 4 -45dB 1/1
78 Total harmonic distortion 100 1 / (32)2
1 / (79) 2 1 / (178) 2 3.42
77Spurious Signals
Amplitude
Non harmonically related spurious
Frequency
3Fc
Fc
2Fc
78Amplitude Modulation
Determined by modulation depth
Carrier FrequencyFc
Modulation
frequency Fm
modulation
sideband amp
x100
2x
carrier amp
(on linear scale)
F F
Fc
F - F
m
C
m
C
79AM Spectrum With Modulation Distortion
F F
F -2F
c
m
c
m
80Receiver Mode
AM DEMODULATION
25
20
15
10
5
0
5
10
15
20
25
Zero span Res bw 30kHz
200us /div
81Modulation Asymmetry
difference
Mixed AM and FM causes asymmetrical sidebands
82Frequency Modulation Spectrum Analyzer Display
- Modulation frequency frequency of sideband
spacing
Modulation Index
Frequency deviation
Modulation frequency
F
c
83FM-Bessel Zero
Fc
84FM Demodulation
- FM 1.0kHz mod.freq.. 3kHz
deviation
1kHz
/div
Ref 150.000000MHz FM demod Res bw
10kHz
500 ms/div
85Intermodulation Measurement
Spectrum Analyzer
Signal Combiner
862 Tone Intermodulation Analysis
F
F
2
1
2F - F
2F - F
1
2
1
2
3F - 2F
2
1
2
1
87Effect Of Input Level On Signal To Noise
20
30
Signal-to-
40
10kHz
noise
Bandwidth
ratio (dB)
50
60
70
1 kHz
80
Bandwidth
90
100
110
-90
-70
-50
-30
-10
0
Input mixer level (dBm)
88Effect of Input Level On Distortion
20
3rd order
30
Intermodulation
products
40
50
dynamic
60
range
2nd harmonic
70
(dB)
80
90
100
110
-90
-70
-50
-30
-10
0
10
30
Input mixer level (dBm)
89Optimum Dynamic Range
20
10kHz
3rd order
Bandwidth
30
intermod.
40
50
60
2nd harmonic
70
1kHz
Bandwidth
80
90
100
110
-90
-50
-30
-10
0
10
30
Input mixer level (dBm)
90Nomograph To Determine IM Products
25
30
2nd Order
3rd Order
20
0
0
15
10
5
10
10
0
10
20
5
-10
15
30
0
-20
20
40
-5
-30
25
50
-10
-40
30
60
-20
-50
35
70
-30
-60
40
80
-40
-70
45
90
Intercept
Signal
Intermodulation
point (dBm)
level (dBm)
products dB down
91Intermodulation Intercept Point
30
Intercept point
20
10
Output
level
0
Fundamental
(dBm)
-10
-20
-30
-40
3rd order
products
-50
-70
-60
-50
-40
-30
-20
-10
0
Input level (dBm)
92Square Wave
Spectrum Analyzer
1 / t
F Pulse repetition frequency (PRF)1/T
t Pulse width
Oscilloscope
T1/F
t
93Pulsed RF
Spectrum Analyzer
P.R.F
1/T
f1/t
t
T
94Pulsed RF
1
2
Wider pulse than 1 -
- High PRF - Low line density
Narrower lobes
PRF and Line density same
3
4
PRF and line density -
PRF lower than 1 -
same as 3
Higher line density
Wider pulse-Narrow lobes
Pulse width and lobes same
95Pulse Modulation
Envelope display, or
pulse mode
B.W.lt0.3xP.R.F.
B.W.gt1.7xP.R.F
1. Pulse spacing independent
1. Line spacing constant
in frequency
of frequency span
2. Displayed amplitude
2. Displayed amplitude
independent of
changes with resolution
resolution bandwidth
bandwidth
3. Pulse spacing changes
3. Line spacing independent
of sweep time
with sweep time
96Zero Span
Amplitude
Frequency Reference Frequency
Bandwidth Resolution Bandwidth
Displays change in amplitude with time
1. Amplitude demodulation
2. RF rise and fall times
3. Pulse ringing, overshoot and droop
97Understanding Spectrum Analyzer Controls
Detector
Log
Mixer
Amp
IF Amplifier
IF Filters
Input
Attenuator
Video
Filters
Voltage
controlled
oscillator
Display
98Resolution Bandwidth
resolution
bandwidth
Narrow resolution
Narrow
Narrow bandwidth reveals fine details
bandwidth
99Resolution Bandwidth
100Hz Span
100Noise Floor
100kHz
-90 dBm
10kHz
-100 dBm
1kHz
-120dBm
100Hz
-130dBm
10Hz
Noise floor drops as the resolution bandwidth is
reduced
101Sweep Speed
Correct Sweep Speed
102To display
Video Bandwidth
Output
Input
RF
Input
Detector
Resolution
filters
bandwidth
Local
oscillator
Need slower sweep to achieve
noise smoothing
103Sideband Noise
104Typical Sideband Noise
10Hz
100Hz
1kHz
10kHz
100kHz
1MHz
3Hz
-30
Resolution
bandwidths
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
10Hz
100Hz
1kHz
10kHz
100kHz
10MHz
1MHz
Noise
Frequency offset from carrier
dBc/1Hz
105Residual FM
High quality
106To increase sensitivity
RF Attenuator
Input
Input
Resolution
IF Amplifier
Attenuator
filters
Local oscillator
Increase IF amplifier gain - But noise will
increase
- Reduce input Attenuator - But may introduce
Intermodulation
107Residual Responses
Amplitude
Frequency
108Andrew Wallace MEng (Hons) AMIEE Regional Sales
Specialist
109Tea Time