?? ??a - PowerPoint PPT Presentation

About This Presentation
Title:

?? ??a

Description:

Title: Author: nikos Last modified by: nikos – PowerPoint PPT presentation

Number of Views:30
Avg rating:3.0/5.0
Slides: 18
Provided by: nikos
Category:
Tags: soliton

less

Transcript and Presenter's Notes

Title: ?? ??a


1
?? ??aµµ??? ?pt??? ??µata se ?µ??e?? ?a?
pe???d??? µ?sa
  • ???ast???? ???sµat?? ??e?t??????? ??sµ?? ?a? ??
    G?aµµ???? ?pt????
  • ???

????? ??s?????, G?????? ??µ????, ?a?a??t??
?apa??????, ???????? ??t?a??d??
2
T?µata e? s??t?µ?a
  1. Ge???? pe?? µ? ??aµµ???? ??µ?t??, µ? ??aµµ????
    ?pt???? pa?µ?? ?a? solitons
  2. ?? ??aµµ???? ?pt???? pa?µ?? se ?µ??e?? µ?sa 21D
  3. ?? ??aµµ???? ?pt???? pa?µ?? se pe???d???
    µ?sa-??e?µat??? s???t???a

3
Ge???? pe?? µ? ??aµµ???? ??µ?t??, µ? ??aµµ????
?pt???? pa?µ?? ?a? solitons
  • S???t???a, p??t? pa?at???s? ?? ?e?? st? a?????,
    1834

??apa??stas? pa?at???s?? Scott Russell,
Heriot-Watt University 1995
  • S???t???a Ge????? ?a?ad????
  • ??t?p?sµ??a ??µat?pa??ta µe µ??f? a?a?????t? ?
    pe???d??? µetaßa???µe??
  • ??µ????????ta? ap? t?? aµ??ßa?a e??s????p?s?
    fa???µ????
  • ?e? µetaß????? t? p??t??, t?? e????e?a, ? t??
    ta??t?ta t??? µet? ap? µeta?? t??? s??????se??,
    pa?aµ????? a?a?????ta sa? s?µat?d?a, e??? ?a? ?
    ???? soliton (1965)
  • ???a? µ? ??aµµ???? ??t?t?te?
  • ?a?at???se?? Russell
  • ? ??µat?sµ?? e??a? e?t?p?sµ????, sta?e??? se
    p??t?? ?a? d?at??e?ta? ??a µe???e? ap?st?se??
  • ? ta??t?ta e?a?t?ta? ap? t? p??t?? ?a? t? ß????
    t?? ?e???
  • ?? ??µat?sµ?? a?t?? t?? t?p?? de?
    s?ss?µat????ta?, a?t??eta ap? ta s????? ??µata

N.J.Zabusky, M.D.Kruskal, Phys.Rev.Let. 15, 240,
1965 N.N. Akmediev, A.A. Ankiewicz, Solitons
Nonlinear pulses and beams (Chapman and Hall,
1997) E.Infeld, G.Rowlands, Nonlinear waves,
solitons and chaos (Cambridge university press,
1990) R.W.Boyd, Nonlinear Optics (Academic Press,
1992)
4
Ge???? pe?? µ? ??aµµ???? ??µ?t??, µ? ??aµµ????
?pt???? pa?µ?? ?a? solitons
?a fa???µe?a p?? e??s????p???ta? e??a? ? a??µa??
d?asp??? ?a? ? µ?-??aµµ??? ap????s? t?? µ?s??
?a?µ?? e?s?d??
?p????s? µ?s??
?a?µ?? e??d??
  • S???t???? s?µa??e? ?s????p?a, s???? ?a?????
    asta???
  • ??µata ?a? d?ata?a???, a??µa ?a? se ?s????
    µ?-??aµµ??? µ?s? de? s??µat????? apa?t?t?
    s???t???a
  • ?? ??aµµ??? fa???µe?a ?at? t? d??d?s? d?ata?a???
    se ?µ??e?? µ?sa ?a? ? ?pa??? s???t?????
    µe?et??ta? e?tetaµ??a se t?µe?? ?p??
  • ??-??aµµ??? ?pt???
  • ???d?s? d?a????? st? p??sµa
  • ?e?st?µ??a???? ??a t?? s??µat?sµ? ts????µ?? ?a?
    freak waves

d?asp??? (? pe????as?)
a?t?-est?as?
soliton
t
z
f?te???
s??te???
collision
5
Ge???? pe?? µ? ??aµµ???? ??µ?t??, µ? ??aµµ????
?pt???? pa?µ?? ?a? solitons
???te??p???s? µ? ??aµµ???? ??µ?t??
PDEs, ?? ??aµµ???? (f?s???)
??e? ????? a?a?????te? s???t?????? ??se??
  • Korteweb-de Vries
  • Kadomstev-Petviashvili
  • Sine-Gordon

6
?? ??aµµ???? ?pt???? pa?µ?? se ?µ??e?? µ?sa, d??
?a? t???? d?ast?se??
?p?ped?? ??µat?d???? 1 ? 2 e????s?e? d?ast?se??
3D µ?s? 2 ? 3 e????s?e? d?ast?se??
NLSE 31 d?ast?se??
7
?? ??aµµ???? ?pt???? pa?µ?? se ?µ??e?? µ?sa, d??
?a? t???? d?ast?se??
?µ??, se µ?sa µe ?a?????? d?asp??? de? ????µe
collapse (de? ????µe ?a? soliton ß?ßa?a...)
S??se?? ??asp????-pe?????? ast??e?a?
???at?t?ta d?µ??????a? ?a? e?????? pa?µ?? ?a?
a?t???? p?? ?a pa?aµ????? a?a?????ta ?
t??????st?? s???e?t??µ??a ??a ??p??e? ap?st?se??
Bidispersive ?a µ?sa p?? eµfa?????? a?t??eta
p??s?µa pe????as?? ?a? d?asp????
  • ?????µ?t? ???es? ??µ?t?? X
  • ?????ep?d?as? ?a? ??e???? pa?µ??-a?t????

L.W.Liou, X.D.Cao, C.J.McKinstrie, G.P.Agrawal
Phys.Rev.A 46, 4202, 1992
8
?? ??aµµ???? ?pt???? pa?µ?? se ?µ??e?? µ?sa, d??
?a? t???? d?ast?se??
?????µ?t? ???es? ??µ?t?? t?p?? X
  • ??µata ?
  • a?a?????te? ??se?? t?? ??aµµ???? ??µat????
    e??s?s?? µe ?pe??? e????e?a
  • s??a?t?s?a?? e??a? ?????sµa s??a?t?se?? Bessel
  • p??? d?s???? ?a a?apa?a?????

?p???e? d??at?t?ta ???es?? t??? ap? ??????
pa?µ??? (p.?. G?a??s?a????, sech ? CW)
????µ?t??? ep???s? NLSE 21D ??????? pa?µ??
Gaussian ( as?e??? CW)
P2Pc CW 0.1? ?fp/2 ?? ??aµµ???
P2Pc CW 0.1? ?f0 ?? ??aµµ???
P4Pc no CW
?? ??aµµ???
G?aµµ???
J.Salo, J.Fagerholm, A.T.Friberg, M.M.Saloma,
Phys.Rev. E 62, 4261, 2000
9
?? ??aµµ???? ?pt???? pa?µ?? se ?µ??e?? µ?sa, d??
?a? t???? d?ast?se??
?????ep?d?as? ?a? ??e???? pa?µ?? ?a? a?t????,
pa???s?a ???µ?st???? CW
??????????? µet??es? pa?µ??
  • ?? ap?t??esµa t?? a????ep?d?as?? e?a?t?ta?
  • T?s?, f?s?, ?s??, ????a a?????? pa?µ??
  • F?s? ?a? ?s?? CW
  • ????a??a f?s??? fa???µe?a
  • ?????ep?d?as? pa?µ??
  • Bidispersion
  • ???s??s? p?e?????? fasµat???? pe?????? (µ?
    ??aµµ???t?ta)
  • ?? pa?µ?? e??d??
  • ??af??et??? e????s?a ?a? ??????? µetat?p?s?
  • Fasµat??? µetat?p?s?

Input, CW 0.2A ?fp, f1p/2, f2-p/2
Input, CW 0.2A ?fp
Input, CW 0.2A
Input, CW 0.2A ?f0
10
?? ??aµµ???? ?pt???? pa?µ?? se pe???d???
µ?sa-??e?µat??? s???t???a
?fa?µ???? st? µ? ??aµµ??? ?pt???
F???µata se ?pt???? ??e? (Fiber gratings)
S?st????e? ?? G?aµµ???? ??µat?d???? (a) 1D
AlGaAs, (b) 2D silica glass
?? G?aµµ???? F?t?????? ???sta???
(b) ?pt??? epa???? (s?µß??? 4 ep?ped?? ??µ?t??)
(a) e????s?? p??f??
Review papers D.N. Christodoulides et al,
Discretizing light behaviour in linear and
nonlinear waveguide lattices, Nature 424, 817
(2003) A.A. Sukhorukov et al, Spatial Optical
Solitons in Waveguide Arrays, IEEE J. Quant.
Electron. 39, 31 (2003) J.W. Fleischer et al,
Spatial photonics in nonlinear waveguide arrays
, Opt. Express 13, 1780 (2005)
11
?? ??aµµ???? ?pt???? pa?µ?? se pe???d???
µ?sa-??e?µat??? s???t???a
?d??t?te? ??e?µat???? S???t?????
  • ?a µa??µat??? µ??t??a p?? pe?????f??? t? d??d?s?
    ??e?µat???? S???t????? se µ?sa µe e????s?a
    a??µ??????e?a e??a? µ?-????????s?µa. ?e t??
    a?st??? µa??µat??? ?????a de? ?p?????? s???t???a!
    ?p?????? ?µ?? e???sta e?t?p?sµ??a µ?-??aµµ???
    ??µata.
  • ? p?????a s???t?????? ??µ?t?? se µ?-??aµµ???
    p???µata ??e? p???t??? d?af??et??? ?a?a?t???st???
    ap? t?? pe??pt?s? µ?-??aµµ???? ?µ???µ??f?? µ?s??.
  • ? e????s?a a??µ??????e?a t?? µ?s?? s??ep??eta?
    ap??e?a t?? ?d??t?ta? µetaf?????? s?µµet??a?
    (translational invariance) µe ap?t??esµa
  • ?e?????sµ??? ????t???t?ta s???t?????
  • S??µat?sµ? t?? s???t????? se s???e???µ??e? ??se??
    se s??s? µe t?? ?e?µet??a t?? p???µat??
  • ?p? te????????? ?p??? ????? ?d?a?te?? e?d?af????
  • ?pa?t??? s?µa?t??? µ????te?? ?s?? ??a t??
    eµf???s? µ?-??aµµ???? ?d??t?t?? ?a? t??
    s??µat?sµ? t???
  • ?p????? ?a ???s?µ?p??????? se efa?µ????
    d??µ?????s?? ?a? µeta????? ?pt???? s?µ?t?? se
    aµ???? ?pt???? s?s?e???

?fa?µ???? - S?ed?as? / ?atas?e?? (engineering)
S???et?? F?t?????? ??µ?? µe ep???µ?t??
?d??t?te? - ???aµ???? ?pt???? ??e???? (d??aµ???
e?a?t?µe?? ap? t?? ?s??, ??e???? µe ?pt??? s?µata
(p.?. XPM)
12
?? ??aµµ???? ?pt???? pa?µ?? se pe???d???
µ?sa-??e?µat??? s???t???a
T?s? ?a? ??st??e?a S???t????? se S???ete?
F?t?????? ??µ??
Te????µe µ?a f?t????? d?µ? ?p?? t?s? ?? ??aµµ????
?s? ?a? ?? µ?-??aµµ???? ?d??t?te? t?? µ?s?? e??a?
e????s?a a??µ????e?e??
n0(x), ??aµµ???? de??t?? d????as?? n2(x),
µ?-??aµµ???? de??t?? d????as?? e, d?ata?a?t???
pa??µet???
????? ??a St?s?µe? ??se??
???aµ??? s?st?µa
Hamiltonian 11/2 ßa?µ?? e?e??e??a?
13
?? ??aµµ???? ?pt???? pa?µ?? se pe???d???
µ?sa-??e?µat??? s???t???a
?? ad?at??a?t? s?st?µa (e0) ??a ßgt0 ??e? µ?a
?µ???????? t????? p?? a?t?st???e? st?
st?s?µ? s???t???? t?? NLSE ??a ???e x0.
  • ? ?µ???????? t?????
  • s??µat??eta? ap? t?? ?e?a ???s? t?? e?sta????
    ?a? t?? asta???? p???ap??t?ta? t?? sa?µat????
    st?s?µ?? s?µe??? st? µ?d??
  • e??a? ??e?st? ?aµp??? p?? ap?te?e?ta? ap? ?pe??a
    µ?-e????s?a (nontransverse) s?µe?a t?µ??
    (?µ???????? s?µe?a) t?? d?? p???ap??t?t??

14
?? ??aµµ???? ?pt???? pa?µ?? se pe???d???
µ?sa-??e?µat??? s???t???a
? pa???s?a d?ata?a??? (e?0) ??e? sa? ap?t??esµa
t?? ?s???? t??p?p???s? (sp?s?µ?) a?t?? t??
e?a?s??t?? t?????? ?a? t?? eµf???s? s?µe???
e????s?a? t?µ?? t?? d?? p???ap??t?t??.
? s????t?s? Melnikov M(x0) e??a? a?????? t??
ap?stas?? d(x0) t?? d?? p???ap??t?t?? ?p?? a?t?
µet??ta? p??? se µ?a t?µ? Poincare.
  • ?? µ?de??sµ?? t?? s????t?s?? Melnikov
  • a?t?st?????? se ?µ???????? s?µe?a
  • p??sd???????? ??a t? d?ata?a?µ??? s?st?µa ta
    d?a???t? µ??? t?? (a????? s??e????) ???????e?a?
    ??se?? µe pa??µet?? x0

S. Wiggins, Introduction to Applied Nonlinear
Dynamical Systems and Chaos, Springer (2003)
15
?? ??aµµ???? ?pt???? pa?µ?? se pe???d???
µ?sa-??e?µat??? s???t???a
?e??pt?s? n0(x)cos(x), n2(x)0
G?a ??e? t?? pe??pt?se?? e0.1
  • G?a ??a ta ß
  • ??sta??? s???t???? e?t?p?sµ??? st? ??s? µe??st??
    t?? n0(x), x00
  • ?sta??? s???t???? e?t?p?sµ??? st? ??s? e?a??st??
    t?? n0(x), x0p

16
?? ??aµµ???? ?pt???? pa?µ?? se pe???d???
µ?sa-??e?µat??? s???t???a
?e??pt?s? n0(x)cos(x), n2(x)-4.8cos(x)
?d??? a???µ?? s???t?????, st?? ?d?e? ??se??,
d?af??et???? t?p?? e?st??e?a? ??a ß 0.1, 1.
????t?s? t?? e?st??e?a? ap? ?s?? / ??????
e???? / sta?e?? d??d?s??
17
???ast???? ???sµat?? ??e?t??????? ??sµ?? ?a? ??
G?aµµ???? ?pt???? ??? nmoshon_at_central.ntua.gr ?a?.
???????? ??t?a??d?? kyriakos_at_central.ntua.gr
Write a Comment
User Comments (0)
About PowerShow.com