Title: F
1FES 86025Energy Systems Analysis
- 86025_1
- Introduction to Energy Systems
2Energy Systems
- Interaction between
- -- Society
- -- Economy
- -- Technology
- -- Policy
- that shape both
- -- Demand
- -- Supply
- in terms of quantity, quality, costs, impacts.
3Definitions IS Units
- Energy Capacity to do work
- Power Rate of energy transfer
- Newton (N) 1 kg m/s (force)
- Joule (J) 1 N applied over 1 m (energy)
- Watt (W) 1 J/second (power)
- Example 1 HP 745 W (745 J/s) for 1 hr
0.745 kWh - Energy Power x Time Hence importance of load
factors and load curves!
4Examples of Power and Energy (both kill!)
Lightning bolt Power10,000,000 kW(1 109 Volt
x 1 104 Ampere) for 1 second 10,000
MJ/s Energy max. equiv. 2.8 MJ/hr Fazit
Even if storable/useablea lightning bolts
energycould fuel a SLK for less than 1 km!
Mercedes SLK 350Power 200,000 W (200 kW,
3.5L 6-cycl) 200,000 W/s 0.2 MJ/s
Energymax 720 MJ/hr 0.2 MJ/s (x 3600
s/hr)actual Fuel use 10 l/100km 10 x 32 MJ/l
320 MJ/hr(assuming 100 km/hr)
5Power Examples
Human heart 1 W
Light bulb 100 W
Horse 1000 W 1 kW (kilo Watt)
Car 100,000 W 100 kW
Yale PPL 20,000,000 W 20 MW (Mega Watt)
Boeing 747at max thrust 250,000,000 W 250 MW .25 GW
Niagara Falls 2,000,000,000 W 2 GW (Giga Watt)
All US PPL 885,000,000,000 W 885 GW
All World PPL 3,500,000,000,000 W 3500 GW
All US Automobiles 230 million with 100 kW each 23,000 GW
Source updated and modified after Tester et al.,
2005.
6Energy Units and Scales(Source IPCC Energy
Primer)
Quick recap exponentials to common basis are
additive!103 x 106 10(36) 109 or 1000 MJ
1 GJ
7Energy Orders of Magnitude (EJ 1018 J)
- 5,500,000 EJ Annual solar influx
- 1,000,000 EJ Fossil occurrences
- 50,000 EJ Fossil reserves
- 440 EJ World energy use 2000
- 100 EJ USA primary energy supply
- 50 EJ OECD transport energy
use - 20 EJ Saudi Arabia oil prod.
- 4 EJ Italy oil reserves
- 1 EJ NY city or Singapore energy
use
Stocks flows (yr-1)
8Rough Equivalences
- 10 Gtoe 420 EJ
- 1 Gtoe 42 EJ
- 1 Quad 1 EJ
- 1 Mtoe 42 PJ
- 1 toe 42 GJ
- 1 boe 6 GJ
- 1 m3 gas 40 MJ
- 1 kWh 4 MJ
- 1 Btu 1 kJ
9Converting Units
conv_fac.xls v2 class server Resources/data
10Energy Flow Characteristics
- Physical chemical, kinetic, electric, radiant,
- Processing depth primary?secondary?final
- Transaction levels producer?producerproducer?co
nsumerconsumer?consumer (future?) - System boundariessecondary?final?useful?service
11Energy Conversions Efficiencies
conversion 1st Law efficiency
Electric generator m ? e 99
Gas furnace c ? t 90-95
Small electric drive e ? m 60-65
Steam turbine t ? m 40-45
Best PV cells r ? e 20-30
Trad. Cook stove c ? t 10-15
Beef production c ? c 5-10
Fluorescent light e ? r 10
Incandescent light e ? r 2-5
Paraffin candle c ? r 1-2
Global photosynthesis r ? c 0.3
Adapted from Smil, 1998.c chemical, e
electrical, m mechanical, r radiant, t
thermal
Efficiency depends on form adequacy, technology,
scale,!!
12Conversions are far from trivial Example of
combustion (c ? t)
- Fuel oxidizer Products energy
- In ideal conditions energy is the net sum of
creation/destruction of chemical bonds--
exothermic producing energy(e.g. CH4 as
fuel)-- endothermic needing energy(e.g. CH4 as
chemical feedstock) - But combustion is generally far away from ideal
leading to accounting complexities (HHV, LHV) and
most important of all emissions beyond ideal
combustion conditions
13Example of Methane(ideal combustion)
- CH4 O2 ? CO2 H2O (general reaction EQ)
- Balancing for C, H, and O1 C 1 O2 ? 1 CO24 H
1 O2 ? 2 H2Ono oxygen in this fuel (but e.g.
in wood!) - Therefore CH4 2O2 ? CO2 2H2O
- Net energy - 2628 kJ from bonds broken3438 kJ
from bonds created 810 kJ net energy
14Moving beyond ideal combustionExample of CH4
Contd
- Ideal combustion810 kJ/mole Lower Heating
Value - Incl. energy from condensation of water
vapor890 kJ/mole Higher Heating Value - EmissionsCO2 only in ideal case1 mole CO2
12gC (122x16) 44 gCO2 - Emission factors12gC/890 kJ 0.0135 gC/kJ
13.5 gC/MJ HHV12gC/810 kJ 0.0150 gC/kJ 15.0
kgC/GJ LHV - S Fuel-specific energy conversion and emission
factors that dont specify basis (LHV or
HHV) are useless!!
mole mass in g equals molecular weight a mole
contains 6.023 1023 molecules (Avogadros number)
15The Real World
- Emissions under real conditions-- combustion in
air and not pure oxygen ?N emissions (air
21 O, 78 N, 1 other)-- fuel impurities (S, N,
ash, heavy metals..) -- incomplete combustion
(e.g. hydrocarbons, CO, soot, etc) - Important tradeoffs higher efficiency ? higher
combustion temperature (cf. second law of
thermodynamics) ? higher N emissions - Scale dependency (emissions, and control
possibilities) preference for large, centralized
combustion
16Characteristics of Some FuelsSource D. Castorph
et al., 1999, GRI, 2005.
C H S O N Ash H2O LHVkJ/g HHVkJ/g HHV/LHV
Wood 50 6 0 44 0 lt.5 10-20 14.6-16.8 15.9-18.0 1.07- 1.09
Coal(hard coal) 88 5 1 4.5 1.5 3-12 0-10 27.3-24.1 29.3-35.2 1.05-1.07
Diesel 86 13 .3 - - - - 43.0 45.9 1.07
Natural Gas(Range) CH4 74-98 CHs 0-20 H2S 0-5 CO2,O2 0-8 N2 0-5 - - 38-48 42-56 1.10- 1.17
H2 100 - - 120 142 1.18
Note difference to LHV on volume basis gas 40
MJ/m3 H2 10.8 MJ/m3
17More info
- v2 class server
- Resources/data/doe_fueltable.pdf (useful even if
non-metric) - NREL (liquids) http//www.nrel.gov/vehiclesandfue
ls/apbf/progs/search1.cgi - Engineering Toolbox (tons of info), e.g.
- http//www.engineeringtoolbox.com/combustion-boil
er-fuels-t_9.html
18Non-physical Definition of Energy
- System boundaries, processing depth,
upstream/downstream primary?secondary?final ?
?useful?service - Transaction levels/actors involved
producer?producerproducer?consumerconsumer?cons
umer (future?)
19What means.
- Primary energy Resources as extracted from
nature (crude oil, solar heat) - Secondary energy Processed/converted energy
(gasoline from crude oil, electricity from coal
or hydropower) - Final energy (as delivered to consumer)
- Useful energy (converted by final appliances
(heat from radiator, light from bulb) - Services actual demand comfort, illumination,
mobility, (units ephemeral!)
20System Boundaries
- Energy sector Primary? Final (domain of supply
bias) - Energy end-use Final?Useful (domain of consumer
bias) - Energy Integration (IRM, LC) Primary?Useful/Servi
ces - Full Integration (IA) Whole environment (incl.
externalities)
21Global Energy Flows (EJ in 1990)Source modified
after Nakicenovic/Gilli/Kurz, 1996. Update IEA,
2006.
2005 Total losses 340 EJ for 160 EJ useful
energy delivered