Title: Number 2
1Number 2
2Number 2 level descriptors
- LEVEL 3 WRITE NUMBERS IN WORDS
- LEVEL 4 MULTIPLY BY POWERS OF 10
- ORDER WHOLE NUMBERS
- MULTIPLY BY MULTIPLES OF 10
- LEVEL 5 ROUND NUMBERS TO NEAREST 1, 10, etc
- ROUND NUMBERS TO ONE AND TWO DECIMAL PLACES
- LEVEL 6 ORDER DECIMAL NUMBERS
- APPROXIMATE DECIMALS TO A SENSIBLE DEGREE OF
ACCURACY - LEVEL 7 ESTIMATE TO 1, 2 AND 3 SIGNIFICANT
FIGURES SF - USE SF TO ESTIMATE CALCULATIONS
- LEVEL 8
- SOLVE PROBLEMS USING STANDARD FORM
3KEY WORDS
- ESTIMATE
- INTEGER
- MULTIPLY
- DIVIDE
- APPROXIMATE
- ROUNDING
- MULTIPLES
- PLACE VALUE
- POWERS
- ORDER
- DECIMAL PLACE
- SIGNIFICANT FIGURES
- STANDARD FORM
4NUMBERS IN WORDS
- OBJECTIVE
- LEVEL 3 UNDERSTAND HOW TO WRITE NUMBERS IN WORDS
- SUCCESS CRITERIA
- WRITE NUMBERS OF INCREASING MAGNITUDE IN WORDS
- CONVERT NUMBERS WRITTEN IN WORDS INTO DECIMAL
NUMBERS
5TYPES OF NUMBER
- Counting numbers 1, 2, 3, 4, 5,
- Natural numbers 1, 2, 3, 4, 5,
- Odd numbers 1, 3, 5, 7, 9,
- Even numbers 2, 4, 6, 8, 10,
- Integers ,-2, -1, 0, 1, 2,
- Positive integers 1, 2, 3, 4,
- Negative integers -1, -2, -3, -4, -5,
6Match the words to the numbers Match the words to the numbers Match the words to the numbers Match the words to the numbers Match the words to the numbers Match the words to the numbers
Sixty two thousand and five 60025 Sixty two thousand and five 60025
Sixty thousand two hundred and five 625 Sixty thousand two hundred and five 625
Six thousand two hundred and fifty 60205 Six thousand two hundred and fifty 60205
Sixty thousand and twenty five 6025 Sixty thousand and twenty five 6025
Sixty two thousand five hundred 600025 Sixty two thousand five hundred 600025
Six hundred and twenty five 62005 Six hundred and twenty five 62005
Six thousand and twenty five 6205 Six thousand and twenty five 6205
Six thousand two hundred and five 62500 Six thousand two hundred and five 62500
Six hundred thousand and twenty five 6250 Six hundred thousand and twenty five 6250
7Complete the table
millions Hundred thousands Ten thousands thousands hundreds tens units words
3 4 0 9 0 thirty four thousand and ninety
three million and fifty six
4 0 0 0 0 9 3
three hundred and fifty six thousand
3 6 2 9 9 0
4 5 2 9
2 4 7 1 8
3 4 2 1 8 5
8CREATE YOUR OWN whole numbers in words
NUMBER IN WORDS
9What does the 9 represent in each case
9 653 Nine thousand or 9000
85 096
49 632
839
9 828 400
96 000 000
10What does the 9 represent in each case
9 653 Nine thousand or 9000
85 096
49 632
839
9 828 400
96 000 000
Nine tens or 90
Nine thousands or 9000
Nine units or 9
Nine million or 9000 000
Ninety million or 90 000 000
11(No Transcript)
12Write out the decimal numbers in words
5.96 Five point nine six
98.7
2.945
52.87
96.709
0.009
0.06
Note the most common mistake is to say 5.96 is
five point ninety six. This is five point nine
six
13Write out the decimal numbers in words
5.96 Five point nine six
98.7
2.945
52.87
96.709
0.009
0.06
Ninety eight point seven
Two point nine four five
Fifty two point eight seven
Ninety six point seven zero nine
Zero point zero zero nine
Zero point zero six
Note the most common mistake is to say 5.96 is
five point ninety six. This is five point nine
six
14CREATE YOUR OWN decimal numbers in words
NUMBER IN WORDS
15What does the 4 represent in each case
53.47 Four tenths or 4/10
8.504 Four thousandths or 4/1000
9.642 Four hundredths or 4/100
83.49
6.84
93.004
16What does the 4 represent in each case
53.47 Four tenths or 4/10
8.504 Four thousandths or 4/1000
9.642 Four hundredths or 4/100
83.49
6.84
93.004
Four tenths or 4/10
Four hundredths or 4/100
Four thousandths or 4/1000
17(No Transcript)
18NUMBERS IN WORDS REVIEW
- WRITE NUMBERS OF INCREASING MAGNITUDE IN WORDS
- CONVERT NUMBERS WRITTEN IN WORDS INTO DECIMAL
NUMBERS - IDENTIFY MAGNITUDE BY POSITION
19MULTIPLY AND DIVIDE BY POWERS OF 10
- OBJECTIVE
- LEVEL 4 UNDERSTAND HOW TO MULTIPLY AND DIVIDE BY
POWERS OF 10
- SUCCESS CRITERIA
- MULTIPLY BY 10 AND ADD A ZERO
- MULTIPLY BY 100 AND ADD TWO ZEROS
- MULTIPLY A DECIMAL BY 10 AND THE NUMBERS MOVE TO
THE LEFT - DIVIDE A DECIMAL BY 10 AND THE NUMBERS MOVE TO
THE RIGHT
20Starter
- 1 1 1 1 1 1 1 1 1 1
- 5 5 5 5 5 5 5 5 5 5
- 8 8 8 8 8 8 8 8 8 8
- Is there a quick way to add the same number ten
times?
21Modulus
- MODULUS means size irrespective of sign
- -4 4 6 6 -0.06 0.06
22The decimal point needs to be put back into the
number
7850 Seven point eight five
16300 Sixteen point three
47600 Four point seven six three
233000 Two hundred and thirty three
650000 Sixty five thousand
650000 Six thousand five hundred
650000 Six hundred and fifty
185730 Eighteen point five seven three
31200 Three hundred and twelve
07500 Zero point seven five
23The decimal point needs to be put back into the
number
7 850 Seven point eight five
16 300 Sixteen point three
4 7630 Four point seven six three
233 000 Two hundred and thirty three
65000 0 Sixty five thousand
6500 00 Six thousand five hundred
650 000 Six hundred and fifty
18 5730 Eighteen point five seven three
312 00 Three hundred and twelve
0 7500 Zero point seven five
24Multiply numbers by ten
- When a number is multiplied by ten the modulus of
the number increases. - If a whole number is multiplied by 10 a zero is
placed on the right hand end of the number - 16 10 160 7 10 70
- If a decimal number is multiplied by 10 then the
numbers move one place to the left of the decimal
point and empty spaces are replaced by zeros - 2.76 10 27.6 0.62 10 6.2
25Multiply numbers by 10
- Example 45 10 450
- 45 10
- 5 10
- 57 10
- 20 10
- 89 10
- 128 10
- 167 10
- 360 10
- Example 5.7 10 57
- 5.1 10
- 9.2 10
- 12.8 10
- 10.9 10
- 6.056 10
- 0.67 10
- 0.061 10
- 0.0074 10
26Multiply numbers by 10
- Example 45 10 450
- 45 10 450
- 5 10 50
- 57 10 570
- 20 10 200
- 89 10 890
- 128 10 1280
- 167 10 1670
- 360 10 300
- Example 5.7 10 57
- 5.1 10 51
- 9.2 10 92
- 12.8 10 128
- 10.9 10 109
- 6.056 10 60.56
- 0.67 10 6.7
- 0.061 10 0.61
- 0.0074 10 0.074
27Multiply numbers by one hundred
- When a number is multiplied by one hundred the
modulus of the number increases. - If a whole number is multiplied by 100 two zeros
are placed on the right hand end of the number - 46 100 4600 8 100 800
-
- If a decimal number is multiplied by 100 then the
numbers move two places to the left of the
decimal point and empty spaces are replaced by
zeros - 2.6 100 260 0.38 100 38
28Multiply numbers by 100
- Example 37 100 3700
- 89 100
- 9 100
- 27 100
- 60 100
- 49 100
- 524 100
- 973 100
- 940 100
- Example 5.7 100 570
- 8.1 100
- 3.2 100
- 16.8 100
- 14.9 100
- 8.056 100
- 0.95 100
- 0.039 100
- 0.0059 100
29Multiply numbers by 100
- Example 37 100 3700
- 89 100 8900
- 9 100 900
- 27 100 2700
- 60 100 6000
- 49 100 4900
- 524 100 52400
- 973 100 97300
- 940 100 94000
- Example 5.7 100 570
- 8.1 100 810
- 3.2 100 320
- 16.8 100 1680
- 14.9 100 1490
- 8.056 100 805.6
- 0.95 100 95
- 0.039 100 3.9
- 0.0059 100 0.59
30Divide numbers by 10
- When a number is divided by ten the modulus of
the number decreases. - If a whole number is divided by 10 then the
numbers move one place to the right of the
decimal point and empty spaces are filled with
zeros - 16 10 1.6 8 10 0.8
- If a decimal number is divided by 10 then the
numbers move one place to the right of the
decimal point and empty spaces are filled with
zeros - 14.6 10 1.46 0.46 10 0.046
31Divide numbers by 10
- Example 49 10 4.9
- 89 10
- 5 10
- 87 10
- 40 10
- 39 10
- 174 10
- 925 10
- 620 10
- Example 9.5 10 0.95
- 65.1 10
- 43.2 10
- 6.8 10
- 4.9 10
- 7.046 10
- 0.51 10
- 0.064 10
- 0.0038 10
32Divide numbers by 10
- Example 49 10 4.9
- 89 10 8.9
- 5 10 0.5
- 87 10 8.7
- 40 10 4
- 39 10 3.9
- 174 10 17.4
- 925 10 92.5
- 620 10 62
- Example 9.5 10 0.95
- 65.1 10 6.51
- 43.2 10 4.32
- 6.8 10 0.68
- 4.9 10 0.49
- 7.046 10 0.7046
- 0.51 10 0.051
- 0.064 10 0.0064
- 0.0038 10 0.00038
33Divide numbers by 100
- When a number is divided by one hundred the
modulus of the number decreases. - If a whole number is divided by 100 then the
numbers move two places to the right of the
decimal point and empty spaces are filled with
zeros - 67 100 0.67 4 100 0.04
- If a decimal number is divided by 100 then the
numbers move two places to the right of the
decimal point and empty spaces are filled with
zeros - 67.8 100 0.678 0.86 100 0.0086
34Divide numbers by 100
- Example 49 100 0.49
- 89 100
- 63 100
- 7 100
- 90 100
- 73 100
- 714 100
- 953 100
- 630 100
- Example 9.5 100 0.095
- 9.1 100
- 6.2 100
- 46.8 100
- 34.9 100
- 7.056 100
- 0.74 100
- 0.062 100
- 0.0094 100
35Divide numbers by 100
- Example 49 100 0.49
- 89 100 0.89
- 63 100 0.63
- 7 100 0.07
- 90 100 0.9
- 73 100 0.73
- 714 100 7.14
- 953 100 9.53
- 630 100 6.3
- Example 9.5 100 0.095
- 9.1 100 0.091
- 6.2 100 0.062
- 46.8 100 0.468
- 34.9 100 0.349
- 7.056 100 0.07056
- 0.74 100 0.0074
- 0.062 100 0.00062
- 0.0094 100 0.000094
36(No Transcript)
37(No Transcript)
38Create and complete your own snake name
.
39Multiply by Powers of 10 review
- MULTIPLY BY 10 AND ADD A ZERO
- MULTIPLY BY 100 AND ADD TWO ZEROS
- MULTIPLY A DECIMAL BY 10 AND THE NUMBERS MOVE TO
THE LEFT OF THE DECIMAL POINT - DIVIDE A DECIMAL BY 10 AND THE NUMBERS MOVE TO
THE RIGHT OF THE DECIMAL POINT
40ORDER WHOLE NUMBERS
- OBJECTIVE
- LEVEL 4 UNDERSTAND HOW TO ORDER WHOLE NUMBERS
- SUCCESS CRITERIA
- ORDER NEGATIVE NUMBERS
- ORDER POSITIVE NUMBERS
- ORDER INTEGERS
41Complete the Number lines
-10 -10 -6 -6 0 0 2 2 4 4 8 8
-60 -60 -20 -20 0 0 40 40 80 80 100 100
-250 -250 -50 -50 0 0 250 250
42Order whole numbers
- We are often asked to place numbers in order of
size. We must remember that - Negative numbers are smaller than positive
numbers - Zero lies between the positive and negative
numbers - If in doubt think of a number line
43Number lines
-10 -10 -8 -8 -6 -6 -4 -4 -2 -2 0 0 2 2 4 4 6 6 8 8 10 10
-100 -100 -80 -80 -60 -60 -40 -40 -20 -20 0 0 20 20 40 40 60 60 80 80 100 100
-250 -250 -200 -200 -150 -150 -100 -100 -50 -50 0 0 50 50 100 100 150 150 200 200 250 250
44ORDER POSITIVE INTEGERS
- Example
- Place the following numbers in order, smallest
first - 6, 8, 24, 17, 81, 12, 15
- 6, 8, 12, 15, 17, 24, 81
45ORDER POSITIVE INTEGERS
- Place the following sets of numbers in order,
smallest first. - 12, 83, 27, 1, 5
- 30, 41, 5, 17, 46
- 41, 1, 24, 56, 28
- 12, 91, 72, 8, 93
- 81, 93, 56, 34, 9
- Place the temperatures in order, highest to
lowest - 760C, 210C, 260C
- 150C, 180C, 160C
- 910C, 120C, 390C
- 510C, 170C, 560C
- 190C, 160C, 730C
EXTENSION calculate the totals for each
question 1
46ORDER POSITIVE INTEGERS
- Place the following sets of numbers in order,
smallest first. - 1, 5 , 12, 27, 83
- 5, 17, 30, 41, 46
- 1, 24, 28, 41, 56
- 8, 12, 72, 91, 93
- 9, 34, 56, 81, 93
- Place the temperatures in order, highest to
lowest - 210C, 260C, 760C
- 150C, 160C, 180C,
- 120C, 390C, 910C
- 170C, 510C, 560C
- 160C, 190C, 730C
EXTENSION 128, 123
47ORDER NEGATIVE INTEGERS
- Example
- Place the following numbers in order, smallest
first - -6, -8, -4, -7, -18, -2, -5
- -18, -8, -7, -6, -5, -4, -2
48ORDER NEGATIVE INTEGERS
- Place the following sets of numbers in order,
smallest first. - -2, -8, -17, -1, -52
- -3, -4, -8, -27, -16
- -3, -18, -2, -76, -26
- -7, -9, -2, -18, -28
- -8, -56, -42, -37 -92
- Place the temperatures in order, highest to
lowest - -150C, -20C, -160C
- -120C, -80C, -60C
- -90C, -150C, -190C
- -50C, -70C, -90C
- -120C, -60C, -80C
EXTENSION calculate the totals for each
question 1
49ORDER NEGATIVE INTEGERS
- Place the following sets of numbers in order,
smallest first. - -52, -17, -8, -2, -1
- -27, -16, -8, -4, -3
- -76, -26, -18, -3, -2
- -28, -18, -9, -7, -2
- -92, -56, -42, -37 -8
- Place the temperatures in order, highest to
lowest - -160C, -150C, -20C
- -120C, -80C, -60C
- -190C, -150C, -90C
- -90C, -70C, -50C
- -120C, -80C, -60C
EXTENSION -80, -33
50ORDER INTEGERS
- Example
- Place the following numbers in order, smallest
first - 6, 0, -8, 4, 7, 8, -2, -5
- -8, -5, -2, 0, 4, 6, 7, 8
51ORDER INTEGERS
- Place the temperatures in order, lowest to
highest - 60C, 20C, 80C, -50C, -20C, -60C
- 50C, 80C, 00C, -20C, -80C, -60C
- 10C, 120C, 90C, -90C, -150C, -190C
- 50C, 70C, 60C, 00C, -70C, -90C
- 190C, 160C, 70C, -120C, -60C, -80C
- What is the difference between the highest and
lowest values
EXTENSION calculate the totals for each set of
values
52ORDER INTEGERS
- Place the temperatures in order, lowest to
highest - -60C, -50C, -20C, 20C, 60C, 80C
- -80C, -60C, -20C, 00C, 50C, 80C
- -190C, -150C, -90C, 10C, 90C, 120C
- -90C, -70C, 00C, 50C, 60C, 70C,
- -120C, -80C, -60C, 70C, 160C, 190C
- 14, 16, 31, 16, 31
EXTENSION 1, -3, -21, 2,16
53ORDER INTEGERS
- -60C, -40C, -20C, 00C, 20C, 40C, 60C , 80C
- Calculate the total for the temperatures
- Which is the coldest temperature
- List the three coldest temperatures
- List the three highest temperatures
- Extension
- What is the difference between the highest and
coldest temperatures
54ORDER INTEGERS
- -60C, -40C, -20C, 00C, 20C, 40C, 60C , 80C
- Calculate the total for the temperatures 8
- Which is the coldest temperature -6
- List the three coldest temperatures -6, -4, -2
- List the three highest temperatures 4, 6, 8
- Extension
- What is the difference between the highest and
coldest temperatures 14
55ORDER INTEGERS
5
7
1
3
0
- Create the largest number using all five cards
- Create the smallest number using all five cards
- Create the largest number using only the four
smallest cards - Create a number from four cards that can be
divided by 2 - Extension
- Create a four digit number that is divisible by 3
56ORDER INTEGERS
5
7
1
3
0
- Create the largest number using all five cards
75310 - Create the smallest number using all five
cards10357 - Create the largest number using only the four
smallest cards, 5310 - Create a number from four cards that can be
divided by 2, ends in 0 - Extension
- Create a four digit number that is divisible by
3, digits add up to a multiple of 3
57Change in temperature
- Calculate the temperature if it drops by 100C
from 70C - Calculate the temperature if it drops by 150C
from -20C - Calculate the temperature if it rises by 120C
from 40C - Calculate the temperature if it rises by 150C
from -80C
58ORDER WHOLE NUMBERS REVIEW
- ORDER NEGATIVE NUMBERS
- ORDER POSITIVE NUMBERS
- ORDER INTEGERS
59Rounding numbers
- OBJECTIVE
- LEVEL 5 UNDERSTAND HOW TO ROUND INTEGERS AND
DECIMAL NUMBERS TO ONE AND TWO DECIMAL PLACES
- SUCCESS CRITERIA
- ROUND INTEGERS TO THE NEAREST 10 AND 100
- ROUND DECIMAL NUMBERS TO ONE DECIMAL PLACE
- ROUND DECIMAL NUMBERS TO TWO DECIMAL PLACES
60Which is closer
- Is 390 closer to 400 or 300
- Is 7647 closer to 7640 or 7650
- Is 4849 closer to 4900 or 4800
- Is 38 closer to 100 or 0
61Rounding Numbers
- Rules for rounding numbers
- To round to the nearest 10 we look at the number
in the units column - To round to the nearest 100 we look at the number
in the tens column - If the number is less than 5 we round down
- If the number is 5 or greater we round up
- Example Round 5946 to the nearest
- a) 10 b) 100 c) 1000
- a) 5950 b) 5900 c) 6000
- Note 27 to the nearest 100 is 0
- 974 to the nearest 100 is 1000
62Complete the table
Nearest 10 Nearest 100 Extension Nearest 1000
6794
9485
6328
593
786
78
82
17
78325
63Complete the table
Nearest 10 Nearest 100 Extension Nearest 1000
6794 6790 6800 7000
9485 9490 9500 9000
6328 6330 6300 6000
593 590 600 1000
786 790 800 1000
78 80 100 0
82 80 100 0
17 20 0 0
78325 78330 78300 78000
64Rounding Decimal numbers
- Rules for rounding decimal numbers
- To round to one decimal place we look at the
number in the second decimal place - To round to two decimal places we look at the
number in the third decimal place - If the number is less than 5 we round down
- If the number is 5 or greater we round up
- Example Round 48.7852 to
- a) 3 dp b) 2 dp c) 1 dp
- a) 48.765 b) 48.79 c) 48.8
- Note 3.96 rounded to 1 decimal place is 4.0
- 4.796 rounded to 2 decimal places is 4.80
65Complete the table
1 dp 2 dp Extension 3 dp
5.7626
94.7549
6.8463
8.7638
16.482
47.839
38.978
42.73
18.48
66Complete the table
1 dp 2 dp Extension 3 dp
5.7626 5.8 5.76 5.763
94.7549 94.8 94.75 94.755
6.8463 6.8 6.85 6.846
8.7638 8.8 8.76 8.764
16.482 16.5 16.48 16.482
47.839 47.8 47.84 47.839
38.978 39.0 38.98 38.978
42.73 42.7 42.73 42.730
18.48 18.5 18.48 18.480
67Round the number in the centre in different ways
68Write a number in the centre and round in
different ways
69(No Transcript)
70(No Transcript)
71(No Transcript)
72(No Transcript)
73Extension
- Is it possible to round a number to a given
number of decimal places by rounding in stages. - Example round 7.3241 to 1 dp
- 7.3241 7.324 7.32 7.3
- change to 3 dp then 2dp then 1dp
- Will this method work for any number
5.247
74Rounding numbers review
- ROUND INTEGERS TO THE NEAREST 10 AND 100
- ROUND DECIMAL NUMBERS TO ONE DECIMAL PLACE
- ROUND DECIMAL NUMBERS TO TWO DECIMAL PLACES
75Order decimal numbers
- OBJECTIVE
- LEVEL 6 UNDERSTAND HOW TO ORDER DECIMAL NUMBERS
- SUCCESS CRITERIA
- LOOK AT PLACE VALUE TO ORDER DECIMAL NUMBERS
- MULTIPLY BY 10, 100, 1000 WHEN ORDERING DECIMALS
76STARTER ORDER INTEGERS
- Place the temperatures in order, lowest to
highest - 60C, 20C, 80C, -50C, -20C, -60C
- 50C, 80C, 00C, -20C, -80C, -60C
- 10C, 120C, 90C, -90C, -150C, -190C
- 50C, 70C, 60C, 00C, -70C, -90C
- 190C, 160C, 70C, -120C, -60C, -80C
- What is the difference between the highest and
lowest values
EXTENSION calculate the totals for each set of
values
77ORDER INTEGERS
- Place the temperatures in order, lowest to
highest - -60C, -50C, -20C, 20C, 60C, 80C
- -80C, -60C, -20C, 00C, 50C, 80C
- -190C, -150C, -90C, 10C, 90C, 120C
- -90C, -70C, 00C, 50C, 60C, 70C,
- -120C, -80C, -60C, 70C, 160C, 190C
- 14, 16, 31, 16, 31
EXTENSION 1, -3, -21, 2,16
78Multiply by 1000
- Multiply each set of numbers by 1000
- 15.798, 22.782, 35.562, 18.386, 39.784
- 23.42, 49.02, 89.34, 12.73, 27.56
- 38.12, 39.94, 29.48, 16.89, 27.39
- 3.82, 9.03, 6.37, 1.93, 7.48, 2.83
- 2.3, 4.7, 8.3, 2.5, 0.5, 0.6, 0.2, 0.4
79Multiply by 1000 answers
- Multiply each set of numbers by 1000
- 15798, 22782, 35562, 18386, 39784
- 23420, 49020, 89340, 12730, 27560
- 38120, 39940, 29480, 16890, 27390
- 3820, 9030, 6370, 1930, 7480, 2830
- 2300, 4700, 8300, 2500, 500, 600, 200, 400
80ORDER DECIMAL NUMBERS
- Rules to order decimal numbers method 1
- First look at the whole number part of the
decimal number and place in order of size - Then look at the first decimal place and place in
order based on this number - Then move to the next decimal place and place in
order based on this number
81ORDER DECIMAL NUMBERS
- Example method 1
- Place the following numbers in order, largest to
smallest - 1.607, 1.67, 0.6, 0.7, 1.7, 0.76, 0.607
- Look at the whole number part and arrange by
whole number - 1.607, 1.67, 1.7, 0.6, 0.7, 0.76, 0.607
- Look at the first decimal place and arrange in
order - 1.7, 1.607, 1.67, 0.7, 0.76, 0.6, 0.607
- Look at the next decimal place and arrange in
order - 1.7, 1.67, 1.607, 0.76, 0.7, 0.6, 0.607
- Look at the next decimal place and arrange in
order - 1.7, 1.67, 1.607, 0.76, 0.7, 0.607, 0.6
82ORDER DECIMALS
0.85
0.08
0.805
0.58
2.5
2.508
- Which is the largest number
- Which is the smallest number
- Place the numbers in order of size, smallest
first - Extension
- What is the difference between the smallest and
largest
83ORDER DECIMALS
0.85
0.08
0.805
0.58
2.5
2.508
- Which is the largest number 2.508
- Which is the smallest number 0.08
- Place the numbers in order of size, smallest
first - 0.08, 0.58, 0.805, 0.85, 2.508
- Extension
- What is the difference between the smallest and
largest 2.5
84ORDER DECIMAL NUMBERS
- Place the following sets of numbers in order,
smallest first. - 0.8, 0.4, 0.6, 0.5, 0.3
- 0.7, 0.77, 0.76, 0.07
- 0.45, 0.05, 0.4, 0.04
- 0.9, 0.2, 0.18, 0.28
- 0.56, 0.42, 0.37, 0.92
- 1.7, 1.8, 1.07, 1.08
- 3.5, 0.05, 2.05, 2.5
- Place the following sets of numbers in order,
smallest first. - 0.507, 0.57, 0.705, 0.75
- 0.604, 0.46, 0.406, 0.405
- 0.704, 0.074, 0.477, 0.774
- 1.507, 1.705, 1.075, 2.1
- 3.701, 2.509, 1.909, 4,39
- 2.009, 0.009, 0.034, 1.001
- 1.607, 1.76, 1.067, 1.007
EXTENSION calculate the totals for each
question 1
85ORDER DECIMAL NUMBERS
- Place the following sets of numbers in order,
smallest first. - 0.3, 0.4, 0.5, 0.6, 0.8
- 0.07, 0.7, 0.76, 0.77
- 0.04, 0.05, 0.4, 0.45
- 0.18, 0.2, 0.28, 0.9
- 0.37, 0.42, 0.56, 0.92
- 1.07, 1.08, 1.7, 1.8
- 0.05, 2.05, 2.5, 3.5
- Place the following sets of numbers in order,
smallest first. - 0.507, 0.57, 0.705, 0.75
- 0.405, 0.406, 0.46, 0.604
- 0.074, 0.477, 0.704, 0.774
- 1.075, 1.507, 1.705, 2.1
- 1.909, 2.509, 3.701, 4,39
- 0.009, 0.034, 1.001, 2.009
- 1.007, 1.067, 1.607, 1.76
EXTENSION calculate the totals for each
question 1
86ORDER DECIMAL NUMBERS
- Rules to order decimal numbers method 2
- Look at the numbers to be ordered, identify the
highest number of decimal places from the set of
numbers - If the highest number of decimal places is one
then multiply all numbers by 10 - If the highest number of decimal places is two
then multiply all numbers by 100 - If the highest number of decimal places is three
then multiply all numbers by 1000 - This method converts all the decimal numbers into
whole numbers first, we then order the numbers.
We must remember to convert back at the end.
87ORDER DECIMAL NUMBERS
- Example method 2
- Place the following numbers in order, largest to
smallest - 1.607, 1.67, 0.6, 0.7, 1.7, 0.76, 0.607
- Look at the number of decimal places, the biggest
number of decimal places is three - We must multiply every number by 1000 to give
- 1607, 1670, 600, 700, 1700, 760, 607
- We now place this set of numbers in order
- 1700, 1670, 1607, 760, 700, 607, 600
- We now divide all numbers by 1000 to give
- 1.7, 1.67, 1.607, 0.76, 0.7, 0.607, 0.6
88ORDER DECIMALS
0.907
0.96
0.9
0.609
1.69
1.6
- Multiply all numbers by 1000
- Place the multiplied numbers in order, smallest
first - Place the original numbers in order, smallest
first - Extension
- Add the numbers together
6.666
89ORDER DECIMALS
0.907
0.96
0.9
0.609
1.69
1.6
- Multiply all numbers by 1000
- 907, 1600, 1690, 609, 900, 960
- Place the multiplied numbers in order, smallest
first - 609, 900, 907, 960, 1600, 1690
- Place the original numbers in order, smallest
first - 0.609, 0.9, 0.907, 0.96, 1.6, 1.69
- Extension
- Add the numbers together 6.666
90ORDER DECIMAL NUMBERS
- Multiply each number by 100. Place the following
sets of numbers in order, smallest first. - 0.8, 0.84, 0.86, 0.08
- 0.7, 0.77, 0.76, 0.07
- 0.45, 0.05, 0.4, 0.04
- 0.9, 0.2, 0.18, 0.28
- 0.56, 0.42, 0.37, 0.92
- 1.7, 1.8, 1.07, 1.08
- 3.5, 0.05, 2.05, 2.5
- Multiply each number by 1000. Place the
following sets of numbers in order, smallest
first. - 0.507, 0.57, 0.705, 0.75
- 0.604, 0.46, 0.406, 0.405
- 0.704, 0.074, 0.477, 0.774
- 1.507, 1.705, 1.075, 2.1
- 3.701, 2.509, 1.909, 4,39
- 2.009, 0.009, 0.034, 1.001
- 1.607, 1.76, 1.067, 1.007
EXTENSION calculate the totals for each
question 1
91ORDER DECIMAL NUMBERS
- Multiply each number by 100. Place the following
sets of numbers in order, smallest first. - 0.8, 0.84, 0.86, 0.08
- 0.7, 0.77, 0.76, 0.07
- 0.45, 0.05, 0.4, 0.04
- 0.9, 0.2, 0.18, 0.28
- 0.56, 0.42, 0.37, 0.92
- 1.7, 1.8, 1.07, 1.08
- 3.5, 0.05, 2.05, 2.5
- Multiply each number by 1000. Place the
following sets of numbers in order, smallest
first. - 0.507, 0.57, 0.705, 0.75
- 0.604, 0.46, 0.406, 0.405
- 0.704, 0.074, 0.477, 0.774
- 1.507, 1.705, 1.075, 2.1
- 3.701, 2.509, 1.909, 4,39
- 2.009, 0.009, 0.034, 1.001
- 1.607, 1.76, 1.067, 1.007
EXTENSION calculate the totals for each
question 1
92Place numbers in the empty boxes so they increase
in size NAME
93(No Transcript)
94Order decimal numbers review
- MULTIPLY BY 10, 100, 1000 TO ORDER DECIMALS
- USE PLACE VALUE TO ORDER DECIMALS
- ORDER DECIMALS WITH ONE DECIMAL PLACE
- ORDER DECIMALS WITH TWO DECIMAL PLACES
- ORDER DECIMALS WITH THREE DECIMAL PLACES
95SENSIBLE DEGREE OF ACCURACY
- OBJECTIVE
- LEVEL 6 UNDERSTAND HOW TO APPROXIMATE DECIMALS
TO A SENSIBLE DEGREE OF ACCURACY
- SUCCESS CRITERIA
- DETERMINE THE SENSIBLE DEGREE OF ACCURACY
- GIVE ANSWERS TO A SENSIBLE DEGREE OF ACCURACY
96Starter how many decimal places are in each
number
- 4.78
- 5.059
- 0.05
- 0.0008
97DETERMINE THE DEGREE OF ACCURACY
- We are sometimes asked to give answers to a
sensible degree of accuracy. - To determine the degree of accuracy we must look
at the accuracy of the values given in the
question - If values are given to 3 decimal places then the
answer should be given to two decimal places - If the values given in the question are currency
then the answer should be given to 2 decimal
places to indicate pounds and pence
98Determine the degree of accuracy
- Example 1
- A room is measured for carpet fitting. The
length of the room is 4.3 m and the width is 3.62
m - Calculate the area of the carpet required to a
sensible degree of accuracy
- Answer
- Area length width
- Area 4.3 3.62
- Area 15.566 m2
- As the length and width were given to an accuracy
of up to 2 decimal places the area should be
given to the same degree of accuracy - Area 15.57 m2
99Determine the degree of accuracy
- Example 2
- A 4.6 m length of timber is required to build a
fence. The timber costs 4.68 per metre - Calculate the cost of the length of timber
- Answer
- Cost length price per m
- Cost 4.6 4.68
- Cost 21.528
- As the final answer is pounds and pence then a
sensible degree of accuracy would be 2 decimal
places. - Cost 21.53
100Complete the table
Calculation Level of accuracy Answer
4.6 7.25 2 dp
2.8 3.50
3.52 2.43
7.642 7.2
14.6 37.2
4.63 1.24
5.216 0.63
101Complete the table
Calculation Level of accuracy Answer
4.6 7.25 2 dp 33.35
2.8 3.50 2 dp 9.80
3.52 2.43 2 dp 8.55
7.642 7.2 3 dp 55.022
14.6 37.2 1 dp 543.12
4.63 1.24 2 dp 5.74
5.216 0.63 3 dp Ans. 2dp 3.29
102SENSIBLE DEGREE OF ACCURACY REVIEW
- DETERMINE THE SENSIBLE DEGREE OF ACCURACY
- GIVE ANSWERS TO A SENSIBLE DEGREE OF ACCURACY
103SIGNIFICANT FIGURES
- OBJECTIVE
- LEVEL 7 UNDERSTAND HOW TO APPROXIMATE NUMBERS
USING SIGNIFICANT FIGURES
- SUCCESS CRITERIA
- EXPRESS NUMBERS USING SIGNIFICANT FIGURES
- APPROXIMATE CALCULATIONS USING SIGNIFICANT FIGURES
104Starter
- Why would the number one hundred and seventy
three be written like this? - 173
105Significant figures
- The numbers 127, 6.24, 0.0278, 809, 0.504 and
62500 all have three significant figures - 0.0278 has three significant figures as the
zeros at the front dont count - 62500 has three significant figures as the zeros
at the end dont count - 809 has three significant figures as the zeros
between other digits count
106Significant figures
- How many significant figures do these numbers
have? - 2
- 91
- 183
- 408
- 87000
- 2408
- How many significant figures do these numbers
have? - 3.1
- 5.09
- 0.7
- 0.083
- 0.508
- 0.0006
107Significant figures
- How many significant figures do these numbers
have? - 2 1 sf
- 91 2 sf
- 183 3 sf
- 408 3 sf
- 87000 2 sf
- 2408 4 sf
- How many significant figures do these numbers
have? - 3.1 2 sf
- 5.09 3 sf
- 0.7 1 sf
- 0.083 2 sf
- 0.508 3 sf
- 0.0006 1 sf
108Rounding numbers using significant figures
- Numbers can be rounded using significant figures
in much the same way as we round decimals. - If the digit in the next column of significance
is 5 or greater then we round up, else it stays
the same - 347 rounded to 2 significant figures is 350
109Estimate the following to one significant figure
- 29
- 68
- 72
- 14
- 172
- 149
- 184
- 227
- 678
- 17.5
- 128.9
- 0.67
- 0.37
- 0.92
- 0.029
- 0.079
- 0.052
- 0.0068
110Estimate the following to one significant figure
- 30
- 70
- 70
- 10
- 200
- 100
- 200
- 200
- 700
- 20
- 100
- 0.7
- 0.4
- 0.9
- 0.03
- 0.08
- 0.05
- 0.007
111Estimate the following to two significant figure
- 562
- 672
- 272
- 146
- 138
- 128
- 1560
- 37600
- 45200
- 45.9
- 386.9
- 0.268
- 0.382
- 0.578
- 0.0946
- 0.0942
- 0.00638
- 0.000836
112Estimate the following to two significant figure
- 560
- 670
- 270
- 150
- 140
- 130
- 1600
- 38000
- 45000
- 46
- 39
- 0.27
- 0.38
- 0.58
- 0.095
- 0.094
- 0.0064
- 0.00084
113Rounding numbers using significant figures
number 1 sf 2 sf 3 sf
346
2894
2.476
19.382
14.975
0.2784
0.003864
0.07399
0.799
114Rounding numbers using significant figures
number 1 sf 2 sf 3 sf
346 300 350 346
2894 3000 2900 2890
2.476 2 2.5 2.48
19.382 20 19 19.4
14.975 10 15 15.0
0.2784 0.3 0.28 0.278
0.003864 0.004 0.0039 0.00386
0.07399 0.07 0.074 0.0740
0.799 0.8 0.80 0.799
115Estimating using significant figures
- Estimating is when we change numbers into numbers
we can use to calculate answers in our heads.
Round all numbers to 1 significant figure - 37 9 40 10 400
- We can now see that 37 9 should give a value
near 400
116Estimate the answer example
117Estimate answers to the following problems
118answers
- 1
- 10 b) 0.6 c) 5
- d) 5 e) 28 f) 450
- 2
- 9.66 b) 0.54 c) 5.2
- d) 4.9 e) 26.9 f) 447
119Create your own problem showing how you would
calculate an estimate of the answer.calculate
the actual answer. Then compare answers and
comment
120SIGNIFICANT FIGURES REVIEW
- EXPRESS NUMBERS USING SIGNIFICANT FIGURES
- APPROXIMATE CALCULATIONS USING SIGNIFICANT FIGURES
121STANDARD FORM
- OBJECTIVE
- LEVEL 8 UNDERSTAND HOW TO USE STANDARD FORM
- SUCCESS CRITERIA
- KNOW WHY WE USE STANDARD FORM
- CONVERT NUMBERS INTO STANDARD FORM
- CONVERT NUMBERS FROM STANDARD FORM
- WHEN TO ADD AND SUBTRACT INDEX NUMBERS
- USE STANDARD FORM IN CALCULATIONS (NON CALC)
- USE STANDARD FORM IN CALCULATIONS (CALCULATOR)
122STARTER COMPLETE THE TABLE
NUMBER TEN TIMES TEN DIVIDE POWER OF 10 WRITTEN 10n
10
100 1 10 10 102
1000 1 10 10 10
10000
100000
0.1
0.01 1 10 10 10-2
0.001 1 10 10 10
0.0001
0.00001
123(No Transcript)
124Laws of indices
- ya yb ya b
- ya yb ya - b
- (ya )b yab
- y0 1 y1 y
125Laws of indices ya yb ya b
- Example
- 72 74 72 4 76
- Exercise Simplify
- 32 34
- 54 55
- 88 84
- 61 65
- 92 96
126Laws of indices ya yb ya - b
- Example
- 76 74 76 - 4 72
- Exercise Simplify
- 36 34
- 59 55
- 88 84
- 68 65
- 94 96
127Laws of indices (ya)b ya byab
- Example
- (76)4 76 4 724
- Exercise Simplify
- (36)4
- (59)5
- (83)4
- (68)5
- (94)6
128Laws of indices cont
129Laws of indices cont
130KNOW WHY WE USE STANDARD FORM
- Standard form is used to express very large and
very small numbers in a different way - 620000000000000 is a very large number
- In standard form 620000000000000 6.2 1014
- 0.000000000017 is a very small number
- In standard form 0.000000000017 1.7 10-12
131CONVERT NUMBERS INTO STANDARD FORM
- To write numbers in standard form they must
conform to these rules - A 10n
- 1 A lt10 and n is an integer
- This means A must be greater than or equal to 1
but less than 10. It must have a single digit
(1, 2, 3, 4, 5, 6, 7, 8, 9) before the decimal
point. - n is a positive or negative whole number
132CONVERT NUMBERS INTO STANDARD FORM
- Example 1
- Convert 267000 into standard form
- The decimal point must move 5 places to give 2.67
- 267000 2.67 105
- Example 2
- Convert 34000 into standard form
- The decimal point must move 4 places left to give
3.4 - 34000 3.4 104
133CONVERT NUMBERS INTO STANDARD FORM
- A 10n
- 290 2.9 102
- 7300 7.3 103
- 68000 6.8 104
- 72000 7.2 104
- 45100 4.51 103
- 742000 7.42 105
134CONVERT NUMBERS INTO STANDARD FORM
- 1 Convert into standard form
- 120 1.2 102
- 450
- 270
- 780
- 6300
- 3400
- 2300
- 7800
- 2 Convert into standard form
- 620 6.2 102
- 950
- 1700
- 9830
- 2390
- 54000
- 83900
- 18000
135CONVERT NUMBERS INTO STANDARD FORM
- 1 Convert into standard form
- 1900 1.9 103
- 2600
- 7900
- 8300
- 16000
- 39000
- 43000
- 28000
- 2 Convert into standard form
- 6500 6.5 103
- 9300
- 13000
- 94000
- 390000
- 240000
- 98000000
- 59000000
136CONVERT NUMBERS INTO STANDARD FORM
- Example 1
- Convert 0.00056 into standard form
- The decimal point must move 4 places to give 5.6
- 0.00056 5.6 10-4
- Example 2
- Convert 0.0058 into standard form
- The decimal point must move 3 places to give 5.8
- 0.0058 5.8 10-3
137CONVERT NUMBERS INTO STANDARD FORM
- A 10n
- 0.037 3.7 10-2
- 0.0028 2.8 10-3
- 0.00038 3.8 10-4
- 0.00029 2.9 10-4
- 0.00582 5.82 10-3
- 0.0000283 2.83 10-5
138CONVERT NUMBERS INTO STANDARD FORM
- Convert into standard form
- 0.038 3.8 10-2
- 0.049
- 0.068
- 0.039
- 0.0032
- 0.0084
- 0.0067
- 0.00074
- Convert into standard form
- 0.098 9.8 10-2
- 0.063
- 0.0048
- 0.0019
- 0.000062
- 0.000084
- 0.000000062
- 0.00000000293
139CONVERT NUMBERS INTO STANDARD FORM
- Convert into standard form
- 0.0028 2.8 10-3
- 0.0049
- 0.00068
- 0.00039
- 0.00032
- 0.000084
- 0.000067
- 0.0000074
- Convert into standard form
- 0.0063 63 10-3
- 0.0042
- 0.00093
- 0.00049
- 0.000056
- 0.00000748
- 0.000000000412
- 0.0000000000843
140CONVERT NUMBERS FROM STANDARD FORM
- Example 1
- Convert 5.39 104 into an ordinary number
- The decimal point must move 4 places to the right
- 5.39 104 53900
- Example
- Convert 6.73 105 into an ordinary number
- The decimal point must move 5 places to the right
- 6.73 105 673000
141CONVERT NUMBERS FROM STANDARD FORM
- Convert into ordinary numbers
- 5.3 102 530
- 3.8 102
- 3.5 102
- 2.4 102
- 3.5 103
- 9.3 103
- 5.27 103
- 5.034 103
- Convert into ordinary numbers
- 6.5 103 6500
- 8.1 103
- 3.9 103
- 6.2 104
- 7.4 104
- 8.5 104
- 7.23 105
- 2.307 105
142CONVERT NUMBERS FROM STANDARD FORM
- Example 1
- Convert 6.7 10-3 into an ordinary number
- The decimal point must move 3 places to the left
- 6.7 10-3 0.0067
- Example 2
- Convert 8.31 10-3 into an ordinary number
- The decimal point must move 3 places to the left
- 8.31 10-3 0.00831
143CONVERT NUMBERS FROM STANDARD FORM
- Convert into ordinary numbers
- 5.9 10-2 0.059
- 7.9 10-2
- 3.6 10-2
- 4.7 10-2
- 2.6 10-3
- 4.9 10-3
- 3.1 10-3
- 8.63 10-3
- Convert into ordinary numbers
- 8.3 10-3 0.0083
- 2.9 10-3
- 1.8 10-3
- 9.5 10-3
- 8.4 10-4
- 9.8 10-4
- 2.8 10-4
- 4.35 10-4
144WHEN TO ADD AND SUBTRACT INDEX NUMBERS
- The number 107 is written in index form. The
number 10 is the base number and the number 7 is
the index number - 107
Index number
Base number
145WHEN TO ADD INDEX NUMBERS
- When two index form numbers are multiplied
together and they have the same base we can add
the index numbers - 103 105 103 5 108
146WHEN TO ADD INDEX NUMBERS
- Example 1
- Simplify
- 104 103
- The base numbers are the same so we can add the
index numbers - 104 103 104 3 107
- Example 2
- Simplify
- 10-2 107
- The base numbers are the same so we can add the
index numbers - 10-2 107 10-2 7 105
147WHEN TO ADD INDEX NUMBERS
- Simplify
- 104 105 109
- 102 105
- 106 103
- 107 104
- 104 107
- 106 104
- 104 102
- 103 105
- Simplify
- 104 107 1011
- 103 105
- 106 105
- 108 104
- 10-4 107
- 10-6 1014
- 10-4 107
- 10-3 105
148WHEN TO ADD INDEX NUMBERS
- Simplify
- 10-4 107 103
- 10-2 105
- 106 10-2
- 107 10-3
- 10-4 107
- 106 10-2
- 104 10-2
- 10-3 105
- Simplify
- 10-2 10-7 10-9
- 10-3 10-5
- 10-4 10-5
- 10-8 10-3
- 10-4 10-8
- 10-6 10-4
- 10-4 10-6
- 10-3 10-8
149WHEN TO SUBTRACT INDEX NUMBERS
- When two index form numbers are divided and they
have the same base we can subtract the index
numbers - 107 105 107 5 102
150WHEN TO SUBTRACT INDEX NUMBERS
- Example 1
- Simplify
- 108 103
- The base numbers are the same so we can add the
index numbers - 108 103 108 3 105
- Example 2
- Simplify
- 10-5 103
- The base numbers are the same so we can add the
index numbers - 10-5 103 10-5 3 10-8
151WHEN TO SUBTRACT INDEX NUMBERS
- Simplify 1
- 109 107 102
- 108 105
- 107 103
- 105 104
- 108 103
- 105 103
- 104 102
- 102 105
- Simplify 2
- 109 104 105
- 108 103
- 1011 103
- 107 104
- 10-5 10-2
- 10-2 103
- 104 10-2
- 10-8 10-3
152WHEN TO SUBTRACT INDEX NUMBERS
- Simplify 3
- 10-5 106 10-11
- 10-8 105
- 10-7 103
- 10-5 104
- 108 10-3
- 105 10-4
- 104 10-2
- 10-2 10-5
- Simplify 4
- 10-7 10-5 10-2
- 10-6 10-2
- 10-1 10-3
- 10-7 10-3
- 10-8 10-4
- 10-2 10-8
- 10-9 10-2
- 10-8 10-5
153USE STANDARD FORM IN CALCULATIONS (NON CALC)
- We can simplify expressions given in standard
form using the skills we have gained. - Example
- Simplify 3.0 105 4.0 103
- Rearrange 3.0 4.0 105 103
- Multiply together
- Answer 12 108 1.2 109
154USE STANDARD FORM IN CALCULATIONS (NON CALC)
- Simplify 1
- 2.0 105 4.0 103
- 3.0 106 2.0 102
- 5.0 102 3.0 103
- 4.0 103 3.0 104
- 2.0 107 2.5 103
- 1.5 104 4.0 105
- 2.0 105 1.5 106
- 2.5 104 3.0 103
- Simplify 2
- 2.0 106 2.5 104
- 1.5 105 4.0 106
- 2.0 106 1.5 107
- 2.5 105 3.0 108
- 2.0 104 4.3 102
- 3.4 103 2.0 104
- 5.0 104 2.1 105
- 4.0 103 3.1 104
155USE STANDARD FORM IN CALCULATIONS (NON CALC)
- We can simplify expressions given in standard
form using the skills we have gained. - Example
- Simplify 8.0 105 (4.0 103)
- Rearrange 8.0 4.0 105 103
- Divide
- Answer 2.0 102
156USE STANDARD FORM IN CALCULATIONS (NON CALC)
- Simplify 1
- 8.0 105 (4.0 103)
- 8.0 107 (2.0 102)
- 6.0 103 (3.0 107)
- 4.0 105 (2.0 106)
- 9.0 109 (3.0 102)
- 2.0 105 (4.0 103)
- 5.0 104 (2.5 104)
- 3.0 103 (1.5 106)
- Simplify 2
- 6.0 105 (3.0 106)
- 9.0 107 (3.0 107)
- 6.0 103 (2.0 105)
- 4.0 105 (2.0 109)
- 5.0 109 (2.5 105)
- 2.0 105 (4.0 107)
- 9.0 104 (4.5 108)
- 7.0 103 (3.5 104)
157USE STANDARD FORM IN CALCULATIONS (CALCULATOR)
- To enter 105 into a calculator we must use the
raise to power button - 8.6 105 when entered into a calculator we press
the buttons in this sequence - 8.6 10 5 860000
xy
x
xy
158USE STANDARD FORM IN CALCULATIONS (CALCULATOR)
- Example
- Simplify 3.2 108 4.0 1012
- 3.2 10 8 4.0 10 12 25.6 1020
- 3.2 108 4.0 1012 2.56 1021
xy
xy
159USE STANDARD FORM IN CALCULATIONS (CALCULATOR)
- Simplify 1
- 2.0 105 4.0 103
- 3.0 106 2.0 102
- 5.0 102 3.0 103
- 4.0 103 3.0 104
- 2.0 107 2.5 103
- 1.5 104 4.0 105
- 2.0 105 1.5 106
- 2.5 104 3.0 103
- Simplify 2
- 2.0 106 2.5 104
- 1.5 105 4.0 106
- 2.0 106 1.5 107
- 2.5 105 3.0 108
- 2.0 104 4.3 102
- 3.4 103 2.0 104
- 5.0 104 2.1 105
- 4.0 103 3.1 104
160USE STANDARD FORM IN CALCULATIONS (CALCULATOR)
- Example
- simplify 4.8 108
- 2.4 1012
- 4.8 10 8 (2.4 10 12) 2.0
10-4 - 4.8 108 2.0 10-4
- 2.4 1012
xy
xy
R
161USE STANDARD FORM IN CALCULATIONS (NON CALC)
- Simplify 1
- 8.0 105 (4.0 103)
- 8.0 107 (2.0 102)
- 6.0 103 (3.0 107)
- 4.0 105 (2.0 106)
- 9.0 109 (3.0 102)
- 2.0 105 (4.0 103)
- 5.0 104 (2.5 104)
- 3.0 103 (1.5 106)
- Simplify 2
- 6.0 105 (3.0 106)
- 9.0 107 (3.0 107)
- 6.0 103 (2.0 105)
- 4.0 105 (2.0 109)
- 5.0 109 (2.5 105)
- 2.0 105 (4.0 107)
- 9.0 104 (4.5 108)
- 7.0 103 (3.5 104)
162(No Transcript)
163(No Transcript)
164(No Transcript)
165STANDARD FORM REVIEW
- KNOW WHY WE USE STANDARD FORM
- CONVERT NUMBERS INTO STANDARD FORM
- CONVERT NUMBERS FROM STANDARD FORM
- WHEN TO ADD AND DIVIDE INDEX NUMBERS
- USE STANDARD FORM IN CALCULATIONS (NON CALC)
- USE STANDARD FORM IN CALCULATIONS (CALCULATOR)
166(No Transcript)
167(No Transcript)
168(No Transcript)
169(No Transcript)
170(No Transcript)
171(No Transcript)
172(No Transcript)
173(No Transcript)
174(No Transcript)
175(No Transcript)
176(No Transcript)
177(No Transcript)
178(No Transcript)
179(No Transcript)
180(No Transcript)
181(No Transcript)
182(No Transcript)
183(No Transcript)
184(No Transcript)
185(No Transcript)
186(No Transcript)
187(No Transcript)
188(No Transcript)
189(No Transcript)
190(No Transcript)
191(No Transcript)
192(No Transcript)
193Number 2 level descriptors
- OBJECTIVE
- LEVEL 7 UNDERSTAND HOW TO ESTIMATE TO 1, 2 AND 3
SIGNIFICANT FIGURE
- SUCCESS CRITERIA
- KNOW WHY WE ESTIMATE NUMBERS
- WRITE NUMBERS TO 1, 2 AND 3 SIGNIFICANT FIGURES
- KEEP ZEROS TO MAINTAIN MAGNITUDE
194(No Transcript)
195(No Transcript)
196(No Transcript)
197(No Transcript)
198(No Transcript)
199(No Transcript)
200(No Transcript)
201(No Transcript)
202(No Transcript)
203(No Transcript)
204Number 2 level descriptors
- OBJECTIVE
- LEVEL 7 UNDERSTAND HOW TO ESTIMATE TO
SIGNIFICANT FIGURES TO FIND APPROXIMATE ANSWERS
TO PROBLEMS
- SUCCESS CRITERIA
- FIND APPROXIMATE SOLUTIONS TO PROBLEMS BY
ESTIMATING NUMBERS
205(No Transcript)
206(No Transcript)
207(No Transcript)
208(No Transcript)
209(No Transcript)
210(No Transcript)
211(No Transcript)
212(No Transcript)
213(No Transcript)
214(No Transcript)
215Number 2 level descriptors
- OBJECTIVE
- LEVEL 8 UNDERSTAND HOW TO WRITE NUMBERS IN
STANDARD FORM
- SUCCESS CRITERIA
- CONVERT A NUMBER WRITTEN IN DECIMAL FORM INTO
STANDARD FORM
216(No Transcript)
217(No Transcript)
218(No Transcript)
219(No Transcript)
220Number 2 level descriptors
- OBJECTIVE
- LEVEL 8 UNDERSTAND HOW TO WRITE STANDARD FORM
NUMBERS IN DECIMAL FORM
- SUCCESS CRITERIA
- CONVERT A NUMBER WRITTEN IN STANDARD INTO DECIMAL
FORM
221(No Transcript)
222(No Transcript)
223Number 2 level descriptors
- OBJECTIVE
- LEVEL 8 UNDERSTAND HOW TO SOLVE PROBLEMS USING
STANDARD FORM WITH A CALCULATOR
- SUCCESS CRITERIA
- USE THE XY BUTTON ON A CALCULATOR
- USE BRACKETS TO KEY IN PROBLEMS
224(No Transcript)
225(No Transcript)
226(No Transcript)
227(No Transcript)
228(No Transcript)
229(No Transcript)
230Number 2 level descriptors
- OBJECTIVE
- LEVEL 8 UNDERSTAND HOW TO SOLVE PROBLEMS USING
STANDARD FORM
- SUCCESS CRITERIA
- USE THE LAWS OF INDICES TO MULTIPLY AND DIVIDE
NUMBERS WRITTEN IN STANDARD FORM - ADD AND SUBTRACT NUMBERS WRITTEN IN STANDARD FORM
231(No Transcript)
232(No Transcript)
233(No Transcript)
234(No Transcript)
235(No Transcript)
236(No Transcript)
237(No Transcript)
238(No Transcript)
239(No Transcript)
240NUMBER STARTERS
241(No Transcript)
242(No Transcript)
243(No Transcript)
244(No Transcript)
245(No Transcript)
246(No Transcript)
247(No Transcript)
248(No Transcript)
249(No Transcript)
250(No Transcript)
251Write numbers in words
- Objectives
- Understand how to round off integers
- Check results
- Success Criteria
- Be able to round off integers to the nearest 10,
100 or 1000 - Be able to tell if an answer is of the correct
order of magnitude.
252Key Words
- Integers
- Natural numbers
- Decimal numbers
- Decimal place
- Significant figures
- Approximate
- Estimate
- Rounding
- Standard form
- Place value
- Multiply
- Divide
- Rounding
- Powers
- Nearest
- Zero
253Rounding integers
- Objectives
- Understand how to round off integers
- Check results
- Success Criteria
- Be able to round off integers to the nearest 10,
100 or 1000 - Be able to tell if an answer is of the correct
order of magnitude.
254School Bus Journey
1 3 5
7 9
2 4 6
8
255School Bus Journey
10 30 50 70
90
20 40 60
80
256School Bus Journey
- Which bus stop would you get on if you lived
- 18km from school
- 33km from school
- 11km from school
- 75km from school
- 94km from school
- 35km from school
- 87km from school
- 25km from school
-
257School Bus Journey
100 300 500
700 900
200 400 600
800
258School Bus Journey
- Which bus stop would you get on if you lived
- 418km from school
- 303km from school
- 630km from school
- 750km from school
- 946km from school
- 135km from school
- 597km from school
- 825km from school
259Rounding Off nearest 10 Round off the
following numbers to the nearest 10
- 1) 6 ans
- 2) 13 ans
- 3) 17 ans
- 4) 321 ans
- 925 ans
- 1369 ans
- 8394 ans
- 6929 ans
- 12937 ans
260Rounding Off nearest 100Round off the
following numbers to the nearest 100
- 1) 27 ans
- 2) 53 ans
- 3) 88 ans
- 4) 145 ans
- 150 ans
- 1983 ans
- 2943 ans
- 12948 ans
- 40385 ans
261Rounding Off nearest 1000 Round off the
following numbers to the nearest 1000
- 1) 500 ans
- 2) 1200 ans
- 3) 2499 ans
- 4) 3501 ans
- 6700 ans
- 37814 ans
- 67194 ans
- 93167 ans
- 48560 ans
262Roundi